[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Journal Citation Index

 

Citation Indices from GS

AllSince 2020
Citations98575246
h-index3925
i10-index255127

 

..
Central Library of Kurdistan University of Medical Sciences
AWT IMAGE
..
Vice-Chancellery for Research and Technology
AWT IMAGE
..
SCImago Journal & Country Rank
:: Volume 28, Issue 4 (Scientific Journal of Kurdistan University of Medical Sciences 2023) ::
SJKU 2023, 28(4): 39-65 Back to browse issues page
Study of Molecular Docking and Prediction of Toxicity of Morin Analogues as Anti-Cancer Agents and Aromatase Inhibitors
Tooba Abdizadeh
Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran , abdizadeh.t@skums.ac.ir
Abstract:   (1061 Views)
Background and Aim: After lung cancer, breast cancer is the main cause of death from cancer among women. Aromatase is a key enzyme involved in the development of estrogen receptor-positive breast cancer, which catalyzes the final stage of estrogen biosynthesis from the conversion of androstenedione and testosterone, and can be a promising target in the treatment of hormone-dependent breast cancer. In this study, the effects of morin and its analogues on aromatase enzyme were evaluated.
Materials and Methods: In this descriptive-analytical study, for bioinformatics assessment, the 3D structure of morin analogues (15 compounds), the standard drug (anastrozole) and aromatase enzyme were obtained from PubChem and PDB databases, respectively. Molecular docking studies in relation to the effects of the compounds on the aromatase enzyme were performed using MOE-2014 software. Then the physicochemical properties and biological activity of the compounds were predicted using Swiss ADME, PASS and Swiss Target Prediction browsers.
Results: The findings of the present study showed that morin analogues were non-toxic and favorable in terms of physicochemical properties. Also, all morin analogues were capable of inhibiting the aromatase enzyme. The best docking results belonged to galangin, morin, quercetin and rhamnetin compounds with strong binding energy (-13.90 to -14.79 kcal/mol) compared to anastrozole. The prediction coefficient of biological activities of these compounds was 0.175 to 0.952. Proteases, kinases, oxidoreductases, cytochrome P450 and lyases were the main predicted targets for all proposed compounds in the study.
Conclusion: Based on the results of bioinformatics studies, morin analogues, because of their suitable placement in the active site of the aromatase, provide more effective inhibition than the standard chemical drug and can be good candidates for hormone-dependent breast cancer treatment in the in vitro and in vivo studies.

 
Keywords: Morin, Molecular docking, Aromatase, Breast cancer
Full-Text [PDF 1560 kb]   (435 Downloads)    
Type of Study: Original Research | Subject: Pharmacology
Received: 2022/05/31 | Accepted: 2022/10/15 | Published: 2023/09/27
References
1. Mahvi DA, Liu R, Grinstaff MW, Colson YL, Raut CP. Local cancer recurrence: the realities, challenges, and opportunities for new therapies. CA Cancer J Clin. 2018;68(6):488-505. [DOI:10.3322/caac.21498] [PMID] []
2. Shah V, Bhaliya1 J, Patel GM. In silico docking and ADME study of deketene curcumin derivatives
3. (DKC) as an aromatase inhibitor or antagonist to the estrogen‑alpha positive receptor (Erα+): potent application of breast cancer. Struct Chem. 2022;33(2):571-600. [DOI:10.1007/s11224-021-01871-2] [PMID] []
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424. [DOI:10.3322/caac.21492] [PMID]
5. Adhikari N, Baidya SK, Jha T. Effective anti-aromatase therapy to battle against estrogen-mediated breast cancer: comparative SAR/QSAR assessment on steroidal aromatase inhibitors. Eur J Med Chem. 2020;208:112845. [DOI:10.1016/j.ejmech.2020.112845] [PMID]
6. Grizzi G, Ghidini M, Botticelli A, Tomasello G, Ghidini A, Grossi F, Fusco N, Cabiddu M, Savio T, Petrelli F. Strategies for increasing the effectiveness of aromatase inhibitors in locally advanced breast cancer: an evidence-based review on current options. Cancer Manag Res. 2020;12:675. [DOI:10.2147/CMAR.S202965] [PMID] []
7. Santen RJ, Simpson E. History of estrogen: its purification, structure, synthesis, biologic actions, and clinical implications. Endocrinology. 2019;160(3):605-25. [DOI:10.1210/en.2018-00529] [PMID]
8. Korzets Y, Yariv O, Mutai R, Moore A, Shochat T, Goldvaser H. The Impact of Endogenous Estrogen Exposures on the Characteristics and Outcomes of Estrogen Receptor Positive, Early-stage Breast Cancer. Discov Oncol. 2021;12(1):26. [DOI:10.1007/s12672-021-00420-x] [PMID] []
9. Starek-Świechowicz B, Budziszewska B, Starek A. Endogenous estrogens-breast cancer and chemoprevention. Pharmacol Rep. 2021;73(6):1497-512. [DOI:10.1007/s43440-021-00317-0] [PMID] []
10. Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Cancer lett. 2015;356(2):231-43. [DOI:10.1016/j.canlet.2014.04.018] [PMID] []
11. Jha T, Adhikari N, Halder AK, Saha A. Ligand-and structure-based drug design of non-steroidal aromatase inhibitors (NSAIs) in breast cancer. Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment. IGI Global, 2015: 400-70. [DOI:10.4018/978-1-4666-8136-1.ch011]
12. Hero M, Varimo T, Raivio T. Aromatase inhibitors in puberty. Curr Opin Endocr Metab Res. 2020;14:37-41. [DOI:10.1016/j.coemr.2020.04.001]
13. Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1-24. [DOI:10.1016/j.pharmthera.2017.12.012] [PMID]
14. Rani S, Raheja K, Luxami V, Paul K. A review on diverse heterocyclic compounds as the privileged scaffolds in non-steroidal aromatase inhibitors. Bioorg Chem. 2021;113:105017. [DOI:10.1016/j.bioorg.2021.105017] [PMID]
15. Kümler I, Knoop AS, Jessing CA, Ejlertsen B, Nielsen DL. Review of hormone-based treatments in postmenopausal patients with advanced breast cancer focusing on aromatase inhibitors and fulvestrant. ESMO open. 2016;1(4):e000062. [DOI:10.1136/esmoopen-2016-000062] [PMID] []
16. Ghosh D, Lo J, Egbuta C. Recent progress in the discovery of next generation inhibitors of aromatase from the structure-function perspective. J Med Chem. 2016;59(11):5131-48. [DOI:10.1021/acs.jmedchem.5b01281] [PMID] []
17. Akça KT, Demirel MA, Süntar I. The Role of Aromatase Enzyme in Hormone Related Diseases and Plant-Based Aromatase Inhibitors as Therapeutic Regimens. Curr Top Med Chem. 2022;22(3):229-46. [DOI:10.2174/1568026621666211129141631] [PMID]
18. Karkola S, Wähälä K. The binding of lignans, flavonoids and coumestrol to CYP450 aromatase: a molecular modelling study. Mol Cell Endocrinol. 2009;301(1-2):235-44. [DOI:10.1016/j.mce.2008.10.003] [PMID]
19. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111-29. [DOI:10.1038/nrd4510] [PMID]
20. Romano JD, Tatonetti NP. Informatics and computational methods in natural product drug discovery: a review and perspectives. Front. genet. 2019;10:368. [DOI:10.3389/fgene.2019.00368] [PMID] []
21. Pohl F, Kong Thoo Lin P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules. 2018;23(12):3283. [DOI:10.3390/molecules23123283] [PMID] []
22. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803. [DOI:10.1021/acs.jnatprod.9b01285] [PMID]
23. Rupasinghe H. Special Issue "flavonoids and their disease prevention and treatment potential": Recent advances and future perspectives. Molecules. 2020;25(20):4746. [DOI:10.3390/molecules25204746] [PMID] []
24. Cao Y-L, Lin J-H, Hammes H-P, Zhang C. Flavonoids in Treatment of Chronic Kidney Disease. Molecules. 2022;27(7):2365. [DOI:10.3390/molecules27072365] [PMID] []
25. Lephart ED. Modulation of aromatase by phytoestrogens. Enzyme Res. 2015;2015. [DOI:10.1155/2015/594656] [PMID] []
26. Davis JM, Murphy EA, Carmichael MD. Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep. 2009;8(4):206-13. [DOI:10.1249/JSR.0b013e3181ae8959] [PMID]
27. Awasthi M, Singh S, Pandey VP, Dwivedi UN. Molecular docking and 3D-QSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer. J Biomol Struct Dyn. 2015;33(4):804-19. [DOI:10.1080/07391102.2014.912152] [PMID]
28. Praseetha NG, Divya UK, Nair S. Identifying the potential role of curcumin analogues as anti-breast cancer agents; an in silico approach. Egypt J Med Hum Genet. 2022;23(1):100. [DOI:10.1186/s43042-022-00312-x]
29. Ali A, Jan NU, Ali S, Ahmad B, Ali A, Samrana S, Jahan A, Ali H, Khan IA, Rahim H, Ali I. Steroidal alkaloids efficient aromatase inhibitors with potential for the treatment of postmenopausal breast cancer. Chem Biol Drug Des. 2020;95(2):233-9. [DOI:10.1111/cbdd.13635] [PMID]
30. Gürbüz P, Doğan ŞD, Gündüz MG, Uzun K, Uzunhisarcıklı E, Yerer MB. Isolation, Characterization and in Silico Studies of Secondary Metabolites from Jurinea macrocephala DC. with Antiproliferative Activity. Chem Biodivers. 2022;19(4):e202100867. [DOI:10.1002/cbdv.202100867] [PMID]
31. Ghosh D, Griswold J, Erman M, Pangborn W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature. 2009;457:219-23. [DOI:10.1038/nature07614] [PMID] []
32. (a) Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235-49. [DOI:10.1016/S1056-8719(00)00107-6]
33. (b) Shah V, Bhaliya J, Patel GM. In silico docking and ADME study of deketene curcumin derivatives (DKC) as an aromatase inhibitor or antagonist to the estrogen-alpha positive receptor (Erα+): potent application of breast cancer. Struct Chem. 2022;33(2):571-600. [DOI:10.1007/s11224-021-01871-2] [PMID] []
34. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43(21):3867-77. [DOI:10.1021/jm000292e] [PMID]
35. (a) Goel RK, Singh D, Lagunin A, Poroikov V. PASS-assisted exploration of new therapeutic potential of natural products. Med Chem Res. 2011;20:1509-14. [DOI:10.1007/s00044-010-9398-y]
36. (b) Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44(12):1841-6. [DOI:10.1021/jm015507e] [PMID]
37. Banjare L, Verma SK, Jain AK, Thareja S. Design and pharmacophoric identification of flavonoid scaffold‐based aromatase inhibitors. J Heterocycl Chem. 2020;57(9):3483-92. [DOI:10.1002/jhet.4068]
38. Rampogu S, Park C, Son M, Baek A, Zeb A, Lee G, Lee KW. Modulation of aromatase by natural compounds-A pharmacophore guided molecular modelling simulations. S Afr J Bot. 2019;120:230-40. [DOI:10.1016/j.sajb.2018.06.019]
39. El-Kersh DM, Ezzat SM, Salama MM, Mahrous EA, Attia YM, Ahmed MS, Elmazar, MM. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci Rep. 2021;11(1):7121. [DOI:10.1038/s41598-021-86599-z] [PMID] []
40. Rafeeq MM, Sain ZM, Alturki NA, Alzamami A, Asiri SA, Mashraqi MM, Alqosaibi AI, Alnamshan MM, Almutairi A, Alanazi AM, Alam Q. Computational Screening of Natural Compounds for the Discovery of Potential Aromatase Inhibitors: A Promising Therapy for Estrogen-Dependent Breast Cancer. J Pharm Res Int. 2021;33:72-8. [DOI:10.9734/jpri/2021/v33i32A31717]
41. Hamed AN, Abouelela ME, El Zowalaty AE, Badr MM, Abdelkader MS. Chemical constituents from Carica papaya Linn. leaves as potential cytotoxic, EGFR wt and aromatase (CYP19A) inhibitors; a study supported by molecular docking. RSC advances. 2022;12(15):9154-62. [DOI:10.1039/D1RA07000B] [PMID] []
42. Rampogu S, Park C, Ravinder D, Son M, Baek A, Zeb A, et al. Pharmacotherapeutics and molecular mechanism of phytochemicals in alleviating hormone-responsive breast cancer. Oxid Med Cell Longev. 2019;2019. [DOI:10.1155/2019/5189490] [PMID] []
43. Ma WL, Chang N, Yu Y, Su YT, Chen GY, Cheng WC, et al. Ursolic acid silences CYP19A1/aromatase to suppress gastric cancer growth. Cancer Med. 2022;11(14): 2824-35. [DOI:10.1002/cam4.4536] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.SKUMS.REC.1399.237



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdizadeh T. Study of Molecular Docking and Prediction of Toxicity of Morin Analogues as Anti-Cancer Agents and Aromatase Inhibitors. SJKU 2023; 28 (4) :39-65
URL: http://sjku.muk.ac.ir/article-1-7370-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 4 (Scientific Journal of Kurdistan University of Medical Sciences 2023) Back to browse issues page
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4660