[صفحه اصلی ]   [Archive] [ English ]  
:: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اول سایت مجله::
صفحه اول سایت دانشگاه::
اطلاعات مجله::
اعضای دفتر مجله::
نمایه‌های مجله::
آرشیو مقالات::
راهنمای نویسندگان::
راهنمای داوران::
ثبت نام و ارسال مقاله::
امکانات سایت مجله::
واحد علم سنجی دانشگاه::
مقالات مرتبط::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
نظرسنجی
نظر شما در مورد مقالات مجله علمی دانشگاه علوم پزشکی کردستان چیست؟
ضعیف
متوسط
خوب
عالی
   
..
شاخص های استنادی مجله

Citation Indices from GS

AllSince 2019
Citations95865924
h-index3928
i10-index250153

 
..
کتابخانه مرکزی دانشگاه علوم پزشکی کردستان
AWT IMAGE
..
معاونت تحقیقات و فن آوری
AWT IMAGE
..
SCImago Journal & Country Rank
:: دوره 27، شماره 6 - ( مجله علمی دانشگاه علوم پزشکی کردستان 1401 ) ::
جلد 27 شماره 6 صفحات 53-37 برگشت به فهرست نسخه ها
تولید نانو الیاف هیبریدی پلی کاپرولاکتون / ژلاتین / پلی دی متیل سیلوکسان با مورفولوژی‌های مختلف به عنوان داربست‌های بالقوه برای مهندسی بافت
مهدیه دهقان1 ، محمد خواجه مهریزی 2، حبیب نیکوکار3
1- فارغ‌التحصیل دکتری، دانشکده مهندسی نساجی، دانشگاه یزد، یزد، ایران
2- دانشیار، دانشکده مهندسی نساجی، دانشگاه یزد، یزد، ایران ، mkhajeh@yazd.ac.ir
3- استادیار، گروه نانو پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی یزد، یزد، ایران
چکیده:   (1361 مشاهده)
زمینه و هدف: امروزه پژوهش در زمینه‌ی مهندسی بافت به‌طور گسترده‌ای افزایش یافته است. تولید داربست با توجه به مورفولوژی بافت‌ها حائز اهمیت است. هدف از تولید این داربست‌ها ساخت داربست اندومتر رحم است؛ بنابراین تغییر در قطر فیبرهای سنتز شده جهت تولید داربست بهینه صورت گرفت.
مواد و روش ­ها: در این مطالعه، داربست‌های الیاف هیبریدی الکتروریسی شده از پلی کاپرولاکتون (PCL)، ژلاتین (G) و پلی دی متیل سیلوکسان (PDMS) با نسبت‌های مختلف بهینه و با مورفولوژی‌های مختلف توسط تغییر جمع کننده الکتروریسی جهت کاربردهای مهندسی بافت تولید شده است. خواص فیزیک و شیمیایی داربست‌های ساختاری با استفاده از میکروسکوپ الکترونی روبشی (SEM)، غوطه‌وری نمونه های داربست، بازتاب کلی تبدیل فوریه فروسرخ (ATR-FTIR) و استحکام کششی مورد بررسی قرار گرفت. سمیت سلولی داربست‌ها و رشد فیبروبلاست های پوست ختنه انسان بر روی داربست ها با استفاده از MTT بررسی شد. رشد و تکثیر سلول‌ها روی داربست‌ها با رنگ‌آمیزی هماتوکسیلین- ائوزین (H&E) ارزیابی شدند.
یافته‌ها: داربست لایه به لایه، داربست پنبه مانند، داربست مخلوط با سلول، داربست مسطح و نمونه کنترل به ترتیب از نظر رشد و تکثیر سلول حالت کاهشی داشته است؛ بنابراین داربست لایه به لایه و داربست پنبه مانند بهترین گزینه جهت رشد و تکثیر سلول است. همچنین خواص مکانیکی داربست لایه به لایه و داربست پنبه مانند نسبت به داربست‌های دیگر بهتر است. تخلخل داربست پنبه مانند نسبت به بقیه داربست‌ها بهتر است و برای نفوذ سلول به داخل داربست مناسب است هر چند داربست لایه به لایه و داربست مخلوط با سلول به دلیل قرارگیری سلول بین الیاف نفوذ سلول در آن‌ها هم به‌خوبی صورت می‌گیرد.
نتیجه‌گیری: مورفولوژی و ویژگی‌های داربست هیبریدی PCL/ G/ PDMS با تغییر جمع کننده الکتروریسی قابل تنظیم است. خصوصیات داربست‌های تولید شده از سه پلیمر PCL/ G/ PDMS نشان می‌دهد که این داربست‌ها می‌تواند جهت کاربردهای مهندسی بافت از جمله اندام‌های الاستیک مناسب باشد.
واژه‌های کلیدی: مورفولوژی داربست، نانو الیاف، فیبروبلاست، مهندسی بافت، جمع کننده الکتروریسی
متن کامل [PDF 1967 kb]   (409 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: نانوتکنولوژی
دریافت: 1400/2/12 | پذیرش: 1400/9/24 | انتشار: 1401/12/12
فهرست منابع
1. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int J Polym Sci. 2011;2011:1-19.
2. Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today. 2016;11(1):41-60.
3. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HHK. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;2(1):14017.
4. Piskin E. Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed. 1995;6(9):775-795.
5. Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S. Elastic
6. materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater. 2018;79:60-82.
7. Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym Rev. 2018;58(1):164-207.
8. Han J, Branford-White CJ, Zhu LM. Preparation of poly(ε-caprolactone)/ poly(trimethylene carbonate) blend nanofibers by electrospinning. Carbohydr. Polym. 2010;79(1):214-218.
9. Hench LL. Bioceramics: From Concept to Clinic. J Am Ceram Soc. 1991;74(7):1487-1510.
10. Bhat S, Chen C, Day DA. Effects of a Polycaprolactone (PCL) Tissue Scaffold in Rattus norvegicus on Blood Flow. MRS Proc. 2013;1498:27-31.
11. Zhao P, Gu H, Mi H, Rao C, FuJ, Turng L. Fabrication of scaffolds in tissue engineering: A review. Front Mech Eng. 2018;13(1):107-119.
12. Heydari Z, Mohebbi-Kalhori D, Afarani MS. Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater Sci Eng C. 2017;81:127-132.
13. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-1297.
14. Zhang YZ, Venugopal J, Huang ZM, Lim CT. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. Biomacromolecules. 2005;6(5):2583-2589.
15. Ren K, Wang Y, Sun T, Yue W, Zhang H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C. 2017;78:324-332.
16. Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-Kebab-Structured Poly(ε-Caprolactone) Nanofibers Hierarchically Decorated with Chitosan-Poly(ε-Caprolactone) Copolymers for Bone Tissue Engineering. ACS Appl Mater Interfaces. 2015;7(12):6955-6965.
17. Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C. 2013;33(3):1228-1235.
18. TH. Courtney, Mechanical Behavior of Materials. New Delhi: McGraw Hill Education (India) 2013.
19. Rogers JA, Nuzzo RG. Recent progress in soft lithography. Mater Today. 2005;8(2):50-56.
20. Nalwa HS, Ed. Handbook of photochemistry and photobiology. Stevenson Ranch, Calif: American Scientific Publishers 2003.
21. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev. 2019;119(8):5298-5415.
22. Sagitha P, Reshmi CR, Sundaran SP, Sujith A. Recent advances in post-modification strategies of polymeric electrospun membranes. Eur Polym J. 2018;105:227-249.
23. Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10(1):11-25.
24. Kim MS, Jun I, Shin YM, Jang W, Kim SI, Shin H. The Development of Genipin-Crosslinked Poly(caprolactone) (PCL)/Gelatin Nanofibers for Tissue Engineering Applications. Macromol Bioscience. 2010;10:91-100.
25. Varshney N, Sahi AK, Vajanthri KY, Poddar S, Balavigneswaran CK, Prabhakar A, et.al. Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material. Cytotechnology. 2019;71:287-303.
26. Kai D, Prabhakaran MP, Chan BQY, Liow SS, Ramakrishna S, Xu F, et.al. Elastic poly( ε -caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomed Mater. 2016;11(1):015007.
27. Dehghan M, Khajeh Mehrizi M, Nikukar H. Modeling and optimizing a polycaprolactone/ gelatin/ polydimethylsiloxane nanofiber scaffold for tissue engineering: using response surface methodology. J Text Inst. 2021;112(3):482-493.
28. Dehghan M, Nikukar H, Khajeh Mehrizi M. Optimizing the physical parameters of Polycaprolactone-Gelatin- Polydimethylsiloxane composite nanofibr scaffold for tissue engineering application. J Industrial Textiles. 2022;51(9):1445-1466.
29. J. Stankus J, Soletti L, Fujimoto K, Hong YA, Vorp DR, Wagner W. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials. 2007;28:2738-2746.
30. Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26(18):3961-3971.
31. Gryshkov O, Klyui NI, Temchenko VP, Kyselov VS, Chatterjee A, Belyaev AE, et.al. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater Sci Eng C. 2016;68:143-152.
32. Chang EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, et.al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia. 2007; 3:321-330.
33. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532-4539.
34. Pereira RF, Carvalho A, Gil MH, Mendes A, Bártolo PJ. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. CarbohydrPolym. 2013. 98(1):311-320.
35. Xue J, He M, Liang Y, Crawford A, Coates Ph, et.al. Fabrication and evaluation of electrospun PCL-gelatin micro-/nanofiber membranes for anti-infective GTR implants. J Mater Chem B. 2014;2(39):6867-6877.
36. Ren K, Wang Y, Sun T, Yue W, Zhang H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C. 2017;78:324-332.
37. Chiono V, Tonda-Turo C, Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol. 2015;131:87-104.
38. Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed. 2008;19:635-652.
39. El-Kurdi MS, Hong Y, Stankus JJ, Soletti L, Wagner WR, Vorp DA. Transient elastic support for vein grafts using a constricting microfibrillar polymer wrap. Biomaterials. 2008;29:3213-3220.
40. Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL. Electrospinning of collagen/ biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev. 2009;61:1007-1019.
41. Hashizume R, Fujimoto KL, Hong Y, Amoroso NJ, Tobita K, Miki T, et.al. Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold. Biomaterials. 2010;31:3253-3265.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghan M, Khajeh Mehrizi M, Nikukar H. Production of Polycaprolactone / Gelatin / Polydimethylsiloxane Hybrid Nanofibers with Different Morphologies as Potential Scaffolds for Tissue Engineering. SJKU 2023; 27 (6) :37-53
URL: http://sjku.muk.ac.ir/article-1-6723-fa.html

دهقان مهدیه، خواجه مهریزی محمد، نیکوکار حبیب. تولید نانو الیاف هیبریدی پلی کاپرولاکتون / ژلاتین / پلی دی متیل سیلوکسان با مورفولوژی‌های مختلف به عنوان داربست‌های بالقوه برای مهندسی بافت. مجله علمي دانشگاه علوم پزشكي كردستان. 1401; 27 (6) :37-53

URL: http://sjku.muk.ac.ir/article-1-6723-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 27، شماره 6 - ( مجله علمی دانشگاه علوم پزشکی کردستان 1401 ) برگشت به فهرست نسخه ها
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.08 seconds with 46 queries by YEKTAWEB 4660