[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Journal Citation Index

 

Citation Indices from GS

AllSince 2019
Citations90475462
h-index3725
i10-index237138

 

..
Central Library of Kurdistan University of Medical Sciences
AWT IMAGE
..
Vice-Chancellery for Research and Technology
AWT IMAGE
..
SCImago Journal & Country Rank
:: Volume 27, Issue 6 (Scientific Journal of Kurdistan University of Medical Sciences 2023) ::
SJKU 2023, 27(6): 37-53 Back to browse issues page
Production of Polycaprolactone / Gelatin / Polydimethylsiloxane Hybrid Nanofibers with Different Morphologies as Potential Scaffolds for Tissue Engineering
Mahdieh Dehghan1 , Mohammad Khajeh Mehrizi 2, Habib Nikukar3
1- Textile Engineering Department, Faculty of Engineering, Yazd University, Yazd, Iran.
2- Textile Engineering Department, Faculty of Engineering, Yazd University, Yazd, Iran , mkhajeh@yazd.ac.ir
3- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Abstract:   (1149 Views)
Background and Aim: Nowadays, research in the field of tissue engineering has increased widely. Scaffold production is important for regulation of the morphology of the tissues. The purpose of producing these scaffold is to make a uterine endometrial scaffold. Therefore, the fibers with different diameters and morphology were synthesized to produce an optimal scaffold.
Materials and Methods: In this study, electrospun hybrid fiber scaffolds made of polycaprolactone (PCL), gelatin (G) and polydimethylsiloxane (PDMS) with different optimal ratios and different morphologies were produced by electrospinning collector changing for tissue engineering applications. Physicochemical properties of fabricated scaffolds were evaluated using scanning electron microscopy, the immersion of scaffold samples, attenuated total reflectance Fourier transform infrared and tensile strength analysis. Cytotoxicity analysis of scaffolds and human foreskin fibroblasts on the scaffolds were assessed by 3-(4, 5-dimethylthiazoyl-2-yl) 2, 5-diphenyltetrazolium bromide assay. Proliferation and growth of the cells on the scaffolds were evaluated by hematoxylin-eosin staining.
Results: Layer-by-layer scaffold, cotton-like scaffold, mixed cell scaffold, flat scaffold and control sample showed reduced cell growth and proliferation. Therefore, layer-by-layer scaffold and cotton-like scaffolds are the best options for cell growth and proliferation. Also, the mechanical properties of layer-by-layer scaffold and cotton-like scaffolds were better than those of other scaffolds. The cotton-like scaffold was better than other scaffolds in terms of porosity and was suitable for cell penetration into the scaffold. Although layer-by-layer and cell-mixed scaffolds showed suitable cell penetration due to placement of the cells among the fibers.
Conclusion: The morphology and characteristics of the PCL / G / PDMS hybrid scaffolds are adjustable by inducing change in the electrospinning collector. The PCL/ G/ PDMS hybrid scaffolds characteristics showed that these scaffolds were suitable for tissue engineering applications especially engineering of elastic tissues.

 
Keywords: Scaffold morphology, Nanofibers, Fibroblasts, Tissue engineering, Electrospinning collector
Full-Text [PDF 1967 kb]   (269 Downloads)    
Type of Study: Applicable | Subject: Nano technology
Received: 2021/05/2 | Accepted: 2021/12/15 | Published: 2023/03/3
References
1. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int J Polym Sci. 2011;2011:1-19. [DOI:10.1155/2011/290602]
2. Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today. 2016;11(1):41-60. [DOI:10.1016/j.nantod.2016.02.004] [PMID] []
3. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HHK. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;2(1):14017. [DOI:10.1038/boneres.2014.17] [PMID] []
4. Piskin E. Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed. 1995;6(9):775-795. [DOI:10.1163/156856295X00175] [PMID]
5. Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S. Elastic
6. materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater. 2018;79:60-82. [DOI:10.1016/j.actbio.2018.08.027] [PMID]
7. Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym Rev. 2018;58(1):164-207. [DOI:10.1080/15583724.2017.1332640]
8. Han J, Branford-White CJ, Zhu LM. Preparation of poly(ε-caprolactone)/ poly(trimethylene carbonate) blend nanofibers by electrospinning. Carbohydr. Polym. 2010;79(1):214-218. [DOI:10.1016/j.carbpol.2009.07.052]
9. Hench LL. Bioceramics: From Concept to Clinic. J Am Ceram Soc. 1991;74(7):1487-1510. [DOI:10.1111/j.1151-2916.1991.tb07132.x]
10. Bhat S, Chen C, Day DA. Effects of a Polycaprolactone (PCL) Tissue Scaffold in Rattus norvegicus on Blood Flow. MRS Proc. 2013;1498:27-31. [DOI:10.1557/opl.2013.120]
11. Zhao P, Gu H, Mi H, Rao C, FuJ, Turng L. Fabrication of scaffolds in tissue engineering: A review. Front Mech Eng. 2018;13(1):107-119. [DOI:10.1007/s11465-018-0496-8]
12. Heydari Z, Mohebbi-Kalhori D, Afarani MS. Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater Sci Eng C. 2017;81:127-132. [DOI:10.1016/j.msec.2017.07.041] [PMID]
13. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-1297. [DOI:10.1002/term.1682] [PMID]
14. Zhang YZ, Venugopal J, Huang ZM, Lim CT. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. Biomacromolecules. 2005;6(5):2583-2589. [DOI:10.1021/bm050314k] [PMID]
15. Ren K, Wang Y, Sun T, Yue W, Zhang H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C. 2017;78:324-332. [DOI:10.1016/j.msec.2017.04.084] [PMID]
16. Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-Kebab-Structured Poly(ε-Caprolactone) Nanofibers Hierarchically Decorated with Chitosan-Poly(ε-Caprolactone) Copolymers for Bone Tissue Engineering. ACS Appl Mater Interfaces. 2015;7(12):6955-6965. [DOI:10.1021/acsami.5b00900] [PMID]
17. Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C. 2013;33(3):1228-1235. [DOI:10.1016/j.msec.2012.12.015] [PMID]
18. TH. Courtney, Mechanical Behavior of Materials. New Delhi: McGraw Hill Education (India) 2013.
19. Rogers JA, Nuzzo RG. Recent progress in soft lithography. Mater Today. 2005;8(2):50-56. [DOI:10.1016/S1369-7021(05)00702-9]
20. Nalwa HS, Ed. Handbook of photochemistry and photobiology. Stevenson Ranch, Calif: American Scientific Publishers 2003.
21. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev. 2019;119(8):5298-5415. [DOI:10.1021/acs.chemrev.8b00593] [PMID] []
22. Sagitha P, Reshmi CR, Sundaran SP, Sujith A. Recent advances in post-modification strategies of polymeric electrospun membranes. Eur Polym J. 2018;105:227-249. [DOI:10.1016/j.eurpolymj.2018.05.033]
23. Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10(1):11-25. [DOI:10.1016/j.actbio.2013.08.022] [PMID] []
24. Kim MS, Jun I, Shin YM, Jang W, Kim SI, Shin H. The Development of Genipin-Crosslinked Poly(caprolactone) (PCL)/Gelatin Nanofibers for Tissue Engineering Applications. Macromol Bioscience. 2010;10:91-100. [DOI:10.1002/mabi.200900168] [PMID]
25. Varshney N, Sahi AK, Vajanthri KY, Poddar S, Balavigneswaran CK, Prabhakar A, et.al. Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material. Cytotechnology. 2019;71:287-303. [DOI:10.1007/s10616-018-0285-6] [PMID] []
26. Kai D, Prabhakaran MP, Chan BQY, Liow SS, Ramakrishna S, Xu F, et.al. Elastic poly( ε -caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomed Mater. 2016;11(1):015007. [DOI:10.1088/1748-6041/11/1/015007] [PMID]
27. Dehghan M, Khajeh Mehrizi M, Nikukar H. Modeling and optimizing a polycaprolactone/ gelatin/ polydimethylsiloxane nanofiber scaffold for tissue engineering: using response surface methodology. J Text Inst. 2021;112(3):482-493. [DOI:10.1080/00405000.2020.1766317]
28. Dehghan M, Nikukar H, Khajeh Mehrizi M. Optimizing the physical parameters of Polycaprolactone-Gelatin- Polydimethylsiloxane composite nanofibr scaffold for tissue engineering application. J Industrial Textiles. 2022;51(9):1445-1466. [DOI:10.1177/1528083720960156]
29. J. Stankus J, Soletti L, Fujimoto K, Hong YA, Vorp DR, Wagner W. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials. 2007;28:2738-2746. [DOI:10.1016/j.biomaterials.2007.02.012] [PMID] []
30. Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26(18):3961-3971. [DOI:10.1016/j.biomaterials.2004.10.018] [PMID] []
31. Gryshkov O, Klyui NI, Temchenko VP, Kyselov VS, Chatterjee A, Belyaev AE, et.al. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater Sci Eng C. 2016;68:143-152. [DOI:10.1016/j.msec.2016.05.113] [PMID]
32. Chang EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, et.al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia. 2007; 3:321-330. [DOI:10.1016/j.actbio.2007.01.002] [PMID]
33. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532-4539. [DOI:10.1016/j.biomaterials.2008.08.007] [PMID]
34. Pereira RF, Carvalho A, Gil MH, Mendes A, Bártolo PJ. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. CarbohydrPolym. 2013. 98(1):311-320. [DOI:10.1016/j.carbpol.2013.05.076] [PMID]
35. Xue J, He M, Liang Y, Crawford A, Coates Ph, et.al. Fabrication and evaluation of electrospun PCL-gelatin micro-/nanofiber membranes for anti-infective GTR implants. J Mater Chem B. 2014;2(39):6867-6877. [DOI:10.1039/C4TB00737A] [PMID]
36. Ren K, Wang Y, Sun T, Yue W, Zhang H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C. 2017;78:324-332. [DOI:10.1016/j.msec.2017.04.084] [PMID]
37. Chiono V, Tonda-Turo C, Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol. 2015;131:87-104. [DOI:10.1016/j.pneurobio.2015.06.001] [PMID]
38. Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed. 2008;19:635-652. [DOI:10.1163/156856208784089599] [PMID] []
39. El-Kurdi MS, Hong Y, Stankus JJ, Soletti L, Wagner WR, Vorp DA. Transient elastic support for vein grafts using a constricting microfibrillar polymer wrap. Biomaterials. 2008;29:3213-3220. [DOI:10.1016/j.biomaterials.2008.04.009] [PMID] []
40. Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL. Electrospinning of collagen/ biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev. 2009;61:1007-1019. [DOI:10.1016/j.addr.2009.07.012] [PMID]
41. Hashizume R, Fujimoto KL, Hong Y, Amoroso NJ, Tobita K, Miki T, et.al. Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold. Biomaterials. 2010;31:3253-3265. [DOI:10.1016/j.biomaterials.2010.01.051] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghan M, Khajeh Mehrizi M, Nikukar H. Production of Polycaprolactone / Gelatin / Polydimethylsiloxane Hybrid Nanofibers with Different Morphologies as Potential Scaffolds for Tissue Engineering. SJKU 2023; 27 (6) :37-53
URL: http://sjku.muk.ac.ir/article-1-6723-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 27, Issue 6 (Scientific Journal of Kurdistan University of Medical Sciences 2023) Back to browse issues page
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4645