1. Salavati, L. S., Tafvizi, F., & Manjili, H. K. (2017). The association between MMP2− 1306 C> T (rs243865) polymorphism and risk of prostate cancer. Ir. J. Med. Sci. (1971-), 186(1), 103-111. [ DOI:10.1007/s11845-016-1492-9] [ PMID] 2. Farhood, B., Geraily, G., & Alizadeh, A. (2018). Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iran. J. Public Health, 47(3), 309. 3. Grozescu, T., & Popa, F. (2017).Prostate cancer between prognosis and adequate/proper therapy. JML, 10(1), 5. 4. Frame, F. M., & Maitland, N. J. (2019). Epigenetic control of gene expression in the normal and malignant human prostate: A rapid response which promotes therapeutic resistance. Int. J. Mol. Sci., 20(10), 2437. [ DOI:10.3390/ijms20102437] [ PMID] [ ] 5. Mistry, K., & Cable, G. (2003). Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma. JABFM, 16(2), 95-101. [ DOI:10.3122/jabfm.16.2.95] [ PMID] 6. Liu, G., Chen, T., Ding, Z., Wang, Y., Wei, Y., & Wei, X. (2021). Inhibition of FGF‐FGFR and VEGF‐VEGFR signalling in cancer treatment. Cell Prolif., 54(4), e13009. [ DOI:10.1111/cpr.13009] [ PMID] [ ] 7. Shaw, G. (2013). Polymorphism and single nucleotide polymorphisms (SNP s). BJU international, 112(5), 664-665. [ DOI:10.1111/bju.12298] [ PMID] 8. Hirschhorn, J. N., & Daly, M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet., 6(2), 95-108. [ DOI:10.1038/nrg1521] [ PMID] 9. Beikzadeh, B., Angaji, S. A., & Abolhasani, M. (2020). Association study between common variations in some candidate genes and prostate adenocarcinoma predisposition through multi-stage approach in Iranian population. BMC Med. Genet., 21(1), 1-10. [ DOI:10.1186/s12881-020-01014-0] [ PMID] [ ] 10. FitzGerald, L. M., Karlins, E., Karyadi, D. M., Kwon, E. M., Koopmeiners, J. S., Stanford, J. L., & Ostrander, E. A. (2009). Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis. PCAN, 12(2), 192-197. [ DOI:10.1038/pcan.2008.46] [ PMID] [ ] 11. Mistry, K., & Cable, G. (2003). Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma. JABFM, 16(2), 95-101. [ DOI:10.3122/jabfm.16.2.95] [ PMID] 12. Munkley, J., Li, L., Krishnan, S. G., Hysenaj, G., Scott, E., Dalgliesh, C., ... & Elliott, D. J. (2019). Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. Elife, 8.
.028 [ DOI:10.7554/eLife.47678] 13. Lawrence, M. G., Pidsley, R., Niranjan, B., Papargiris, M., Pereira, B. A., Richards, M., ... & Clark, S. J. (2020). Alterations in the methylome of the stromal tumour microenvironment signal the presence and severity of prostate cancer. Clin. Epigenetics, 12(1), 1-18. [ DOI:10.1186/s13148-020-00836-2] [ PMID] [ ] 14. Scott, E., & Munkley, J. (2019). Glycans as biomarkers in prostate cancer. Int. J. Mol. Sci., 20(6), 1389. [ DOI:10.3390/ijms20061389] [ PMID] [ ] 15. Li, J. P., Huang, H. C., Yang, P. J., Chang, C. Y., Chao, Y. H., Tsao, T. C. Y., ... & Yang, S. F. (2020). FGFR4 Gene Polymorphism Reduces the Risk of Distant Metastasis in Lung Adenocarcinoma in Taiwan. IJERPH, 17(16), 5694. [ DOI:10.3390/ijerph17165694] [ PMID] [ ] 16. Xu, B., Tong, N., Chen, S. Q., Hua, L. X., Wang, Z. J., Zhang, Z. D., & Chen, M. (2011). FGFR4 Gly388Arg polymorphism contributes to prostate cancer development and progression: a meta-analysis of 2618 cases and 2305 controls. BMC cancer, 11(1), 1-6. [ DOI:10.1186/1471-2407-11-84] [ PMID] [ ] 17. Chen, L., Lei, Z., Ma, X., Huang, Q., Zhang, X., Zhang, Y., ... & Zheng, T. (2016). Prognostic significance of fibroblast growth factor receptor 4 polymorphisms on biochemical recurrence after radical prostatectomy in a Chinese population. Sci. Rep., 6(1), 1-6. [ DOI:10.1038/srep33604] [ PMID] [ ] 18. Van den Broeck, T., Joniau, S., Clinckemalie, L., Helsen, C., Prekovic, S., Spans, L., ... & Claessens, F. (2014). The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making. Biomed Res. Int., 2014. [ DOI:10.1155/2014/627510] [ PMID] [ ] 19. Peng, T., Sun, Y., Lv, Z., Zhang, Z., Su, Q., Wu, H., ... & Mi, Y. (2021). Effects of FGFR4 G388R, V10I polymorphisms on the likelihood of cancer. Sci. Rep., 11(1), 1-12. [ DOI:10.1038/s41598-020-80146-y] [ PMID] [ ] 20. Zhao, J., Yang, T., & Li, L. (2020). LncRNA FOXP4-AS1 is involved in cervical cancer progression via regulating miR-136-5p/CBX4 axis. Onco Targets Ther, 13, 2347. [ DOI:10.2147/OTT.S241818] [ PMID] [ ] 21. Huang, C., Deng, H., Wang, Y., Jiang, H., Xu, R., Zhu, X., ... & Zhao, X. (2019). Circular RNA circABCC4 as the ceRNA of miR‐1182 facilitates prostate cancer progression by promoting FOXP4 expression. JCMM, 23(9), 6112-6119. [ DOI:10.1111/jcmm.14477] [ PMID] [ ] 22. Li, X. H., Xu, Y., Yang, K., Shi, J. J., Zhang, X., Yang, F., ... & Yang, Z. (2015). Association of THADA, FOXP4, GPRC6A/RFX6 genes and 8q24 risk alleles with prostate cancer in Northern Chinese men. Journal of BU ON.: Journal of B.U.ON., 20(5), 1223-1228. 23. Lindström, S., Schumacher, F. R., Campa, D., Albanes, D., Andriole, G., Berndt, S. I., ... & Kraft, P. (2012). Replication of Five Prostate Cancer Loci Identified in an Asian Population-Results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3) Association of Prostate Cancer Loci across Ethnicities. CEBP, 21(1), 212-216. [ DOI:10.1158/1055-9965.EPI-11-0870-T] [ PMID] [ ]
|