[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Journal Citation Index

 

Citation Indices from GS

AllSince 2019
Citations97146029
h-index3927
i10-index251157

 

..
Central Library of Kurdistan University of Medical Sciences
AWT IMAGE
..
Vice-Chancellery for Research and Technology
AWT IMAGE
..
SCImago Journal & Country Rank
:: Volume 28, Issue 4 (Scientific Journal of Kurdistan University of Medical Sciences 2023) ::
SJKU 2023, 28(4): 1-11 Back to browse issues page
The Effects of Retinoic Acid on the Expression of HNF4α and Cdx-2 Genes in Caco-2 Cells as a Model of Intestinal Barrier
Mahshad Karambeigi1 , Hadi Cheraghi 2, Arash Alizadeh3
1- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
2- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran , h.cheraghi@razi.ac.ir
3- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
Abstract:   (1025 Views)
Background and Aim: Retinoic acid (RA) is involved in protecting the intestinal barrier, inducing differentiation, growth and proliferation of epithelial cells. There are several hypotheses about the mechanism of induction of apoptosis by RA, but few studies have been performed on the role of HNF4α and Cdx-2 in intestinal cells. The aim of this study was to evaluate the survival and expression of these two genes following administration of RA in Caco-2 cells as a model of intestinal epithelial cells.
Materials and Methods: In the present study, Caco-2 cells were used and exposed to retinoic acid at concentrations of 10, 20, and 40 μM for 72 hours. After incubation for 24 and 48 hours, these samples were assigned to evaluate the effects of cytotoxicity by measuring mitochondrial enzyme activity using the MTT method. The expression levels of HNF4α and Cdx-2 genes at the mRNA level were examined by real-time PCR technique.
Results: The results showed that 48 hours after adding 20 and 40 μM RA, the number of cells decreased in a concentration-dependent manner. In the first 24 and 48 hours, the dependence on the expression concentration of the HNF4α gene increased, and in contrast, the expression of the Cdx-2 gene decreased during these hours. Based on the results obtained during the 72 hours of the study, the expression levels of the genes decreased compared to those in the control which was due to the reduction of living cells and disruption of cellular homeostasis.
Conclusion: Use of RA in high concentrations can cause disruption of intestinal homeostasis due to an imbalance between the two genes. Therefore, concentration of retinoic acid derivatives should be selected according to the purpose of treatment.
 
Keywords: Retinoic acid, HNF4α, Cdx-2, Intestinal barrier, Caco-2
Full-Text [PDF 690 kb]   (316 Downloads)    
Type of Study: Original Research | Subject: Oncology
Received: 2022/05/20 | Accepted: 2022/07/6 | Published: 2023/09/27
References
1. González-González M, Díaz-Zepeda C, Eyzaguirre-Velásquez J, González-Arancibia C, Bravo JA, Julio-Pieper M. Investigating gut permeability in animal models of disease. Front Physiol. 2019;9:1962. [DOI:10.3389/fphys.2018.01962] [PMID] []
2. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1-9. [DOI:10.1038/s12276-018-0126-x] [PMID] []
3. Osanai M, Nishikiori N, Murata M, Chiba H, Kojima T, Sawada N. Cellular retinoic acid bioavailability determines epithelial integrity: Role of retinoic acid receptor α agonists in colitis. Mol Pharmacol. 2007;71(1):250-58. [DOI:10.1124/mol.106.029579] [PMID]
4. Amit-Romach E, Uni Z, Cheled S, Berkovich Z, Reifen R. Bacterial population and innate immunity-related genes in rat gastrointestinal tract are altered by vitamin A-deficient diet. J Nutr Biochem. 2009;20(1):70-77. [DOI:10.1016/j.jnutbio.2008.01.002] [PMID]
5. Lima AA, Soares AM, Lima NL, Mota RM, Maciel BL, Kvalsund MP, Barrett LJ, et al. Vitamin A supplementation effects on intestinal barrier function, growth, total parasitic and specific Giardia spp. infections in Brazilian children: a prospective randomized, double-blind, placebo-controlled trial. J Pediatr Gastroenterol Nutr. 2010;50(3):309. [DOI:10.1097/MPG.0b013e3181a96489] [PMID] []
6. Li Y, Gao Y, Cui T, Yang T, Liu L, Li T, et al. Retinoic acid facilitates toll-like receptor 4 expression to improve intestinal barrier function through retinoic acid receptor beta. Cell Physiol Biochem. 2017;42(4):1390-406. [DOI:10.1159/000479203] [PMID]
7. Xu C, Ooi WF, Qamra A, Tan J, Chua BY, Ho SW, et al. HNF4α pathway mapping identifies wild-type IDH1 as a targetable metabolic node in gastric cancer. Gut. 2020;69(2):231-42. [DOI:10.1136/gutjnl-2018-318025] [PMID]
8. Shi Y, Zhou D, Wang B, Zhou D, Shi B. Roles and mechanisms of action of HNF‑4α in the hepatic differentiation of WB‑F344 cells. Int J Mol Med. 2019;43(2):1021-32. [DOI:10.3892/ijmm.2018.4010]
9. Garrison WD, Battle MA, Yang C, Kaestner KH, Sladek FM, Duncan SA. Hepatocyte nuclear factor 4α is essential for embryonic development of the mouse colon. Gastroenterology. 2006;130(4):19-e1. [DOI:10.1053/j.gastro.2006.01.003] [PMID] []
10. Darsigny M, Babeu JP, Dupuis AA, Furth EE, Seidman EG, Lévy É, et al. Loss of hepatocyte-nuclear-factor-4α affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice. PloS One. 2009;4(10):e7609. [DOI:10.1371/journal.pone.0007609] [PMID] []
11. Boyd M, Bressendorff S, Møller J, Olsen J, Troelsen JT. Mapping of HNF4α target genes in intestinal epithelial cells. BMC Gastroenterol. 2009;9(1):1-6. [DOI:10.1186/1471-230X-9-68] [PMID] []
12. Saad RS, Ghorab Z, Khalifa MA, Xu M. CDX2 as a marker for intestinal differentiation: Its utility and limitations. World J Gastrointest Surg. 2011;3(11):159. [DOI:10.4240/wjgs.v3.i11.159] [PMID] []
13. Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1-26. [DOI:10.1007/s10565-005-0085-6] [PMID]
14. Nalle SC, Turner JR. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol. 2015;8(4):720-30. [DOI:10.1038/mi.2015.40] [PMID]
15. Chang Q, Chen Z, You J, McNutt MA, Zhang T, Han Z, et al. All-trans-retinoic acid induces cell growth arrest in a human medulloblastoma cell line. J Neurooncol. 2007;84(3):263-67. [DOI:10.1007/s11060-007-9380-9] [PMID]
16. Das A, Banik NL, Ray SK. Molecular mechanisms of the combination of retinoid and interferon-gamma for inducing differentiation and increasing apoptosis in human glioblastoma T98G and U87MG cells. Neurochem Res. 2009;34(1):87-101. [DOI:10.1007/s11064-008-9669-x] [PMID]
17. Briviba K, Schnäbele K, Schwertle E, Blockhaus M, Rechkemmer G. β-Carotene inhibits growth of human colon carcinoma cells in vitro by induction of apoptosis. Biol Chem. 2001; 382(12):1663-68. [DOI:10.1515/BC.2001.201] [PMID]
18. Li X, Madison BB, Zacharias W, Kolterud A, States D, Gumucio DL. Deconvoluting the intestine: molecular evidence for a major role of the mesenchyme in the modulation of signaling cross talk. Physiol Genomics. 2007;29(3):290-301. [DOI:10.1152/physiolgenomics.00269.2006] [PMID]
19. Stegmann A, Hansen M, Wang Y, Larsen JB, Lund LR, Ritié L, et al. Metabolome, transcriptome, and bioinformatic cis-element analyses point to HNF-4 as a central regulator of gene expression during enterocyte differentiation. Physiol Genomics. 2006;27(2):141-55. [DOI:10.1152/physiolgenomics.00314.2005] [PMID]
20. Olsen L, Bressendorff S, Troelsen JT, Olsen J. Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells. Am J Physiol Gastrointest Liver Physiol. 2005;289(2):G220-26. [DOI:10.1152/ajpgi.00449.2004] [PMID]
21. Liu W, Hu D, Huo H, Zhang W, Adiliaghdam F, Morrison S, et al. Intestinal alkaline phosphatase regulates tight junction protein levels. J Am Coll Surg. 2016;222(6):1009-17. [DOI:10.1016/j.jamcollsurg.2015.12.006] [PMID] []
22. Stevison F, Hogarth C, Tripathy S, Kent T, Isoherranen N. Inhibition of the all-trans retinoic acid (atRA) hydroxylases CYP26A1 and CYP26B1 results in dynamic, tissue-specific changes in endogenous atRA signaling. Drug Metab Dispos. 2017;45(7):846-54. [DOI:10.1124/dmd.117.075341] [PMID] []
23. Grenier E, Maupas FS, Beaulieu J-F, Seidman E, Delvin E, Sane A, et al. Effect of retinoic acid on cell proliferation and differentiation as well as on lipid synthesis, lipoprotein secretion, and apolipoprotein biogenesis. Am J Physiol Gastrointest. 2007;293(6):G1178-G89. [DOI:10.1152/ajpgi.00295.2007] [PMID]
24. Benahmed F, Gross I, Gaunt SJ, Beck F, Jehan F, Domon-Dell C, et al. Multiple regulatory regions control the complex expression pattern of the mouse Cdx2 homeobox gene. Gastroenterology. 2008;135(4):1238-47. e3. [DOI:10.1053/j.gastro.2008.06.045] [PMID]
25. Larsen S, Davidsen J, Dahlgaard K, Pedersen OB, Troelsen JTJIjoms. HNF4α and CDX2 regulate intestinal YAP1 promoter activity. Int J Mol Sci. 2019;20(12):2981. [DOI:10.3390/ijms20122981] [PMID] []
26. Saandi T, Baraille F, Derbal-Wolfrom L, Cattin A, Benahmed F, Martin E, et al. Regulation of the tumor suppressor homeogene Cdx2 by HNF4α in intestinal cancer. Oncogene. 2013;32(32):3782-88. [DOI:10.1038/onc.2012.401] [PMID]
27. Verzi MP, Shin H, San Roman AK, Liu XS, Shivdasani RAJM. Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol Cell Biol. 2013;33(2):281-92. [DOI:10.1128/MCB.01185-12] [PMID] []
28. Girard R, Darsigny M, Jones C, Maloum-Rami F, Gélinas Y, Carpentier AC, et al. HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide. Sci Rep. 2019;9(1):1-11. [DOI:10.1038/s41598-019-41061-z] [PMID] []
29. Zheng J, He S, Qi J, Wang X, Yu J, Wu Y, et al. Targeted CDX2 expression inhibits aggressive phenotypes of colon cancer cells in vitro and in vivo. Int J Oncol. 2017;51(2):478-88. [DOI:10.3892/ijo.2017.4040] [PMID] []
30. Park H-Y, Kunitake Y, Hirasaki N, Tanaka M, Matsui T. Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1. Biosci Biotechnol Biochem. 2015;79(1):130-7. [DOI:10.1080/09168451.2014.951027] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karambeigi M, Cheraghi H, Alizadeh A. The Effects of Retinoic Acid on the Expression of HNF4α and Cdx-2 Genes in Caco-2 Cells as a Model of Intestinal Barrier. SJKU 2023; 28 (4) :1-11
URL: http://sjku.muk.ac.ir/article-1-7360-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 4 (Scientific Journal of Kurdistan University of Medical Sciences 2023) Back to browse issues page
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4660