1- Ph.D. Candidate, Dept. of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran & Ph.D. Candidate, Dept. of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran 2- Professor, Department of Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran & Professor, Department of Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran , abbasdoosti@yahoo.com 3- Assistant Professor, Department of Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran & Assistant Professor, Department of Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
Abstract: (1181 Views)
Background and Aim: The BAB1-0278 has an essential role in abortus infection. This antigen encodes a protein called GcrA, which plays an essential role in the transcription of target genes in the cell cycle. Thus, BAB1-0278 has unique potential in therapeutic strategies against B. abortus. The purpose of this research is to produce engineered Lactococcus lactis bacteria expressing the BAB1-0278 protein of B. abortus. Materials and Methods:The gene construction design contains a signal peptide sequence in the nisin-based expression vector (pN3z8148-Usp45-BAB1-0278) and is synthesized by GENEray. The recombinant plasmid transformed into Escherichia coli bacteria. The recombinant plasmid was extracted from transformed bacteria. L. lactis transformed by electroporation both with the recombinant plasmid containing the target gene pNZ8148-Usp45-BAB1-0278 and the plasmid without the target gene. BAB1-0278 expression was confirmed by reverse polymerase chain reaction (RT-PCR) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot techniques. Results:B. abortus BAB1-0278 was expressed in L. lactisand confirmed by RT-PCR. SDS-PAGE analysis of proteins isolated from L. lactistransformed with recombinant plasmid, compared to untransformed L. lactis, showed a protein with a molecular weight of 13 kDa. Conclusion: The results of PCR, restrictedenzyme digestion, and sequencing by GENEray revealed that BAB1-0278 was cloned correctly in pNZ8148-Usp45. SDS-PAGE and Western blot were used to analyze BAB1-0278 protein expression. Transformed L. lactiscan be a crucial step for oral vaccine research against B. abortus.
1. Khan MZ, Zahoor M. An Overview of Brucellosis in Cattle and Humans, and its Serological and Molecular Diagnosis in Control Strategies. Trop Med Infect Dis. 2018;3(2):65.75 [DOI:10.3390/tropicalmed3020065] [PMID] []
2. Perez A, Berhe M. Brucella, a bacterium with multiple ways of causing infection. Proc (Bayl Univ Med Cent). 2020;34(1):99-101. [DOI:10.1080/08998280.2020.1805674] [PMID] []
3. Jamil T, Khan AU, Saqib M, Muhammad H, Melzer F, Rehman A, et al. Animal and Human Brucellosis in Pakistan. Front Public Health. 2021;9:660508. [DOI:10.3389/fpubh.2021.660508] [PMID] []
4. Poveda-Urkixo I, Ramírez GA, Grilló MJ. Kinetics of Placental Infection by Different Smooth Brucella Strains in Mice. Pathogens. 2022;11(3):279. [DOI:10.3390/pathogens11030279] [PMID] []
5. Senevirathne A, Hewawaduge C, Lee JH. Live vaccine consisting of attenuated Salmonella secreting and delivering Brucella ribosomal protein L7/L12 induces humoral and cellular immune responses and protects mice against virulent Brucella abortus 544 challenge. Vet Res. 2020;51(1):6. [DOI:10.1186/s13567-020-0735-y] [PMID] []
6. Khurana SK, Sehrawat A, Tiwari R, Prasad M, Gulati B, Shabbir MZ, et al. Bovine brucellosis - a comprehensive review. Vet Q. 2021;41(1):61-88. [DOI:10.1080/01652176.2020.1868616] [PMID] []
7. Al-Mariri A, Al-Hallab L, Alabras R, Kherbik H, Khawajkiah M, et al. Protection against virulent Brucella spp. by gamma-irradiated B. ovis in BALB/c mice model. Clin Exp Vaccine Res. 2022;11(1):53-62. [DOI:10.7774/cevr.2022.11.1.53] [PMID] []
8. Tavares LM, de Jesus LCL, da Silva TF, F L Barroso, L Batista V, et al. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol. 2020;8:517166. [DOI:10.3389/fbioe.2020.517166] [PMID] []
9. Song AA, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact. 2017;16(1):55.
https://doi.org/10.1186/s12934-017-0754-1 [DOI:10.1186/s12934-017-0669-x]
10. Gómez L, Alvarez F, Betancur D, Oñate A. Brucellosis vaccines based on the open reading frames from genomic island 3 of Brucella abortus. Vaccine. 2018;36(21):2928-2936. [DOI:10.1016/j.vaccine.2018.04.014] [PMID]
11. Gómez L, Llanos J, Escalona E, Sáez E, Álvarez F, Molina R, et al. Multivalent Fusion DNA Vaccine against Brucella abortus. Biomed Res Int. 2017;2017:6535479. [DOI:10.1155/2017/6535479] [PMID] []
12. Fatehi Z, Doosti A, and Jami MS. "Oral vaccination with novel Lactococcus lactis mucosal live vector-secreting Brucella lumazine synthase (BLS) protein induces humoral and cellular immune protection against Brucella abortus. Archives of Microbiology. 205.4 (2023): 122. [DOI:10.1007/s00203-023-03471-6] [PMID] []
13. Mandel M, Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970;53(1):159-162. doi:10.1016/0022-2836(70)90051-3 [DOI:10.1016/0022-2836(70)90051-3] [PMID]
14. Welker DL, Coburn BM, McClatchy JH, Broadbent JR. Multiple pulse electroporation of lactic acid bacteria Lactococcus lactis and Lactobacillus casei. Journal of microbiological methods. 2019 Nov 1;166:105741. [DOI:10.1016/j.mimet.2019.105741] [PMID]
15. Mierau I, Olieman K, Mond J, Smid EJ. Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact. 2005;4:16. doi:10.1186/1475-2859-4-16 [DOI:10.1186/1475-2859-4-16] [PMID] []
16. Ouwehand A, Isolauri E, Salminen S. The role of the intestinal microflora for the development of the immune system in early childhood. Eur J Nutr. 2002;41 Suppl 1:I32-7. [DOI:10.1007/s00394-002-1105-4] [PMID]
18. Sáez D, Fernández P, Rivera A, Andrews E, Oñate A. Oral immunization of mice with recombinant Lactococcus lactis expressing Cu,Zn superoxide dismutase of Brucella abortus triggers protective immunity. Vaccine. 2012;30(7):1283-90. [DOI:10.1016/j.vaccine.2011.12.088] [PMID]
19. Tabatabai LB, Pugh GW Jr. Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine. 1994;12(10):919-24. [DOI:10.1016/0264-410X(94)90035-3] [PMID]
20. Oñate AA, Vemulapalli R, Andrews E, Schurig GG, Boyle S, Folch H. Vaccination with live Escherichia coli expressing Brucella abortus Cu/Zn superoxide dismutase protects mice against virulent B. abortus. Infect Immun. 1999;67(2):986-8. [DOI:10.1128/IAI.67.2.986-988.1999] [PMID] []
21. Gómez L, Llanos J, Escalona E, Sáez D, Álvarez F, Molina R, et al. Multivalent Fusion DNA Vaccine against Brucella abortus. Biomed Res Int. 2017;2017:6535479. [DOI:10.1155/2017/6535479] [PMID] []
22. Sislema-Egas F, Céspedes S, Fernández P, Retamal-Díaz A, Sáez D, Oñate A. Evaluation of protective effect of DNA vaccines encoding the BAB1_0263 and BAB1_0278 open reading frames of Brucella abortus in BALB/c mice. Vaccine. 2012; 30(50):7286-91. [DOI:10.1016/j.vaccine.2012.09.039] [PMID]
kazemi D, doosti A, Shakhsi niaee M. Expression of the Gene Encoding the Brucella abortus BAB1-0278 Antigen in Probiotic Lactococcus lactis Bacteria. SJKU 2024; 29 (4) :1-13 URL: http://sjku.muk.ac.ir/article-1-7749-en.html