1. 1.Ross CA, Tabrizi SJ. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83-98. [ DOI:10.1016/S1474-4422(10)70245-3] [ PMID] 2. Bonelli RM, Hofmann P. A review of the treatment options for Huntington's disease. Expert Opin Pharmacother. 2004;5(4):767-76. [ DOI:10.1517/14656566.5.4.767] [ PMID] 3. Gray M, Egan GF, Ando A, Churchyard A, Chua P, Stout JC, et al. Prefrontal activity in Huntington's disease reflects cognitive and neuropsychiatric disturbances: the IMAGE-HD study. Exp Neurol. 2013;239:218-28. [ DOI:10.1016/j.expneurol.2012.10.020] [ PMID] 4. Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbussche E, Dom R. Cognitive changes in patients with Huntington's disease (HD) and asymptomatic carriers of the HD mutation: A longitudinal follow-up study. J Neurol. 2004;251:935-42. [ DOI:10.1007/s00415-004-0461-9] [ PMID] 5. Lawrence AD, Watkins LH, Sahakian BJ, Hodges JR, Robbins TW. Visual object and visuospatial cognition in Huntington's disease: implications for information processing in corticostriatal circuits. Brain. 2000;123(7):1349-64. [ DOI:10.1093/brain/123.7.1349] [ PMID] 6. Majerová V, Kalinčík T, Laczó J, Vyhnálek M, Hort J, Bojar M, et al. Disturbance of real space navigation in moderately advanced but not in early Huntington's disease. J Neurol Sci. 2012;312(1-2):86-91. [ DOI:10.1016/j.jns.2011.08.016] [ PMID] 7. Spargo E, Everall I, Lantos P. Neuronal loss in the hippocampus in Huntington's disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry. 1993;56(5):487-91. [ DOI:10.1136/jnnp.56.5.487] [ PMID] [ ] 8. Alvarez-Periel E, Puigdellívol M, Brito V, Plattner F, Bibb JA, Alberch J, et al. Cdk5 contributes to Huntington's disease learning and memory deficits via modulation of brain region-specific substrates. Mol Neurobiol. 2018;55:6250-68. [ DOI:10.1007/s12035-017-0828-4] [ PMID] 9. Crespo-Biel N, Camins A, Pallas M, Canudas A. Evidence of calpain/cdk5 pathway inhibition by lithium in 3-nitropropionic acid toxicity in vivo and in vitro. Neuropharmacology. 2009;56(2):422-8. [ DOI:10.1016/j.neuropharm.2008.09.012] [ PMID] 10. Duff K, Paulsen J, Mills J, Beglinger L, Moser D, Smith M, et al. Mild cognitive impairment in prediagnosed Huntington disease. Neurology. 2010;75(6):500-7. [ DOI:10.1212/WNL.0b013e3181eccfa2] [ PMID] [ ] 11. Paoletti P, Vila I, Rifé M, Lizcano JM, Alberch J, Ginés S. Dopaminergic and glutamatergic signaling crosstalk in Huntington's disease neurodegeneration: the role of p25/cyclin-dependent kinase 5. J Neurosci. 2008;28(40):10090-101. [ DOI:10.1523/JNEUROSCI.3237-08.2008] [ PMID] [ ] 12. Ramaswamy S, McBride JL, Kordower JH. Animal models of Huntington's disease. Ilar J. 2007;48(4):356-73. [ DOI:10.1093/ilar.48.4.356] [ PMID] 13. Fu Y, He F, Zhang S, Jiao X. Consistent striatal damage in rats induced by 3-nitropropionic acid and cultures of arthrinium fungus. Neurotoxicol Teratol. 1995;17(4):413-8. [ DOI:10.1016/0892-0362(94)00078-R] [ PMID] 14. Brouillet E, Guyot MC, Mittoux V, Altairac S, Condé F, Palfi S, et al. Partial inhibition of brain succinate dehydrogenase by 3‐nitropropionic acid is sufficient to initiate striatal degeneration in rat. J Neurochem. 1998;70(2):794-805. [ DOI:10.1046/j.1471-4159.1998.70020794.x] [ PMID] 15. Akashiba H, Ikegaya Y, Nishiyama N, Matsuki N. Differential involvement of cell cycle reactivation between striatal and cortical neurons in cell death induced by 3-nitropropionic acid. J Biol Chem. 2008;283(10):6594-606. [ DOI:10.1074/jbc.M707730200] [ PMID] 16. Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS ONE. 2015; 10(2): doi.org/10.1371/journal.pone.0117223. [ DOI:10.1371/journal.pone.0117223] [ PMID] [ ] 17. Martina A, Christian S. α-Pinene: A never-ending story. Phytochemistry. 2021;190(1):112857-63. [ DOI:10.1016/j.phytochem.2021.112857] [ PMID] 18. Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline. 2008;3:363-9. 19. Porres-Martínez M, González-Burgos E, Carretero ME, Gómez-Serranillos MP. In vitro neuroprotective potential of the monoterpenes α-pinene and 1, 8-cineole against H2O2-induced oxidative stress in PC12 cells. Z Naturforsch C J Biosci. 2016;71(7-8):191-9. [ DOI:10.1515/znc-2014-4135] [ PMID] 20. Khoshnazar M, Bigdeli MR, Parvardeh S, Pouriran R. Attenuating effect of α-pinene on neurobehavioural deficit, oxidative damage and inflammatory response following focal ischaemic stroke in rat. J Pharm Pharmacol. 2019;71(11):1725-33. [ DOI:10.1111/jphp.13164] [ PMID] 21. Khoshnazar M, Parvardeh S, Bigdeli MR. Alpha-pinene exerts neuroprotective effects via anti-inflammatory and anti-apoptotic mechanisms in a rat model of focal cerebral ischemia-reperfusion. J Stroke Cerebrovasc Dis. 2020;29(8):104977. [ DOI:10.1016/j.jstrokecerebrovasdis.2020.104977] [ PMID] 22. Rahmani H, Moloudi MR, Hashemi P, Hassanzadeh K, Izadpanah E. Alpha-Pinene alleviates motor activity in animal model of Huntington's disease via enhancing antioxidant capacity. Neurochem Res. 2023; 23:1-8. [ DOI:10.1007/s11064-023-03860-9] [ PMID] 23. Hashemi P, Rahmani H, Moloudi MR, Rahimi K, Vahabzadeh Z, Izadpanah E. Alpha-Pinene effect on improving working and spatial memory in rats. SJKU 2023; 28 (2) :28-39 [in Perian] [ DOI:10.61186/sjku.28.2.28] 24. Goudarzi S, Rafieirad M. Evaluating the effect of α-pinene on motor activity, avoidance memory and lipid peroxidation in animal model of Parkinson disease in adult male rats. Res J Pharmacog. 2017;4(2):53-63. 25. Khan‐Mohammadi‐Khorrami MK, Asle‐Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha‐pinene is mediated by suppression of the TNF‐α/NF‐κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol. 2022;36(5): doi.org/10.1002/jbt.23006 [ DOI:10.1002/jbt.23006] [ PMID] 26. Lee G-Y, Lee C, Park GH, Jang J-H. Amelioration of Scopolamine-Induced Learning and Memory Impairment by Multiple Bioactivities of Traditional Medicinal Herbs for Treatment of Neurodegenerative Diseases. J Evid Based Complementary Altern Med. 2017; doi.org/10.1155/2017/4926815 [ DOI:10.1155/2017/4926815] [ PMID] [ ] 27. Fotoohi A, Moloudi MR, Hosseini S, Hassanzadeh K, Feligioni M, Izadpanah E. A novel pharmacological protective role for safranal in an animal model of Huntington's disease. Neurochem Res. 2021;46:1372-9. [ DOI:10.1007/s11064-021-03271-8] [ PMID] 28. Kaur N, Jamwal S, Deshmukh R, Gauttam V, Kumar P. Beneficial effect of rice bran extract against 3-nitropropionic acid induced experimental Huntington's disease in rats. Toxicol Rep. 2015;1(2):1222-32. [ DOI:10.1016/j.toxrep.2015.08.004] [ PMID] [ ] 29. Bae G-S, Park K-C, Choi SB, Jo I-J, Choi M-O, Hong S-H, et al. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 2012;91(17-18):866-71. [ DOI:10.1016/j.lfs.2012.08.035] [ PMID] 30. Nazarinia D, Karimpour S, Hashemi P, Dolatshahi M. Neuroprotective effects of Royal Jelly (RJ) against pentylenetetrazole (PTZ)-induced seizures in rats by targeting inflammation and oxidative stress. J CHEM NEUROANAT. 2023;129: doi:10.1016/j.jchemneu.2023.102255. [ DOI:10.1016/j.jchemneu.2023.102255] [ PMID] 31. Ahshin-Majd S, Zamani S, Kiamari T, Kiasalari Z, Baluchnejadmojarad T, Roghani M. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: Possible involved mechanisms. Peptides. 2016;86:102-11. [ DOI:10.1016/j.peptides.2016.10.008] [ PMID] 32. Silva RH, Abílio VC, Kameda SR, Takatsu-Coleman AL, Carvalho RC, Ribeiro RdA, et al. Effects of 3-nitropropionic acid administration on memory and hippocampal lipid peroxidation in sleep-deprived mice. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(1):65-70. [ DOI:10.1016/j.pnpbp.2006.06.019] [ PMID] 33. Fernagut P, Diguet E, Stefanova N, Biran M, Wenning G, Canioni P, et al. Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57Bl/6 mice: behavioural and histopathological characterisation. Neuroscience. 2002;114(4):1005-17. [ DOI:10.1016/S0306-4522(02)00205-1] [ PMID] 34. Nozari K, Rafieirad M. Comparison of Alphapinene and Donpezil Effects on Passive Avoidance Memory in Adult Male Rats. Qom Univ Med Sci J. 2019;13(4):1-10. [in Persian] [ DOI:10.29252/qums.13.4.1] 35. Ahmadi-kanali R, Abbasnejad M, Esmaeili-Mahani S, Pourrahimi AM, Kooshki R. Effects of Intra-hippocampal Administration of Alpha-pinene on Learning and Memory Performances in Adult Male Rats. J Maz Univ Med Sci. 2021;31(200):26-37. [in Persian] 36. D'Mello SR. When good kinases go rogue: Gsk3, p38 mapk and cdks as therapeutic targets for alzheimer's and huntington's disease. Int J Mol Sci. 2021;22(11):5911. [ DOI:10.3390/ijms22115911] [ PMID] [ ] 37. McLinden KA, Trunova S, Giniger E. At the fulcrum in health and disease: Cdk5 and the balancing acts of neuronal structure and physiology. Brain disord ther. 2012; doi: 10.4172/2168-975X.S1-001. [ DOI:10.4172/2168-975X.S1-001] [ PMID] [ ] 38. Cheung ZH, Ip NY. Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends in cell biology. 2012; doi: 10.4172/2168-975X.S1-001 [ DOI:10.4172/2168-975X.S1-001] [ PMID] [ ] 39. Murmu RP, Li W, Holtmaat A, Li J-Y. Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington's disease. J Neurosci. 2013;33(32):12997-3009. [ DOI:10.1523/JNEUROSCI.5284-12.2013] [ PMID] [ ] 40. Crespo-Biel N, Camins A, Pelegrí C, Vilaplana J, Pallàs M, Canudas AM. 3-Nitropropionic acid activates calpain/cdk5 pathway in rat striatum. Neurosci Lett. 2007;421(1):77-81. [ DOI:10.1016/j.neulet.2007.05.038] [ PMID]
|