[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Journal Citation Index


Citation Indices from GS

AllSince 2019


Central Library of Kurdistan University of Medical Sciences
Vice-Chancellery for Research and Technology
SCImago Journal & Country Rank
:: Volume 28, Issue 5 (Scientific Journal of Kurdistan University of Medical Sciences 2023) ::
SJKU 2023, 28(5): 122-130 Back to browse issues page
Nanostructured Drug Delivery Systems for Targeted Therapy of Cancer
Leila Barghi
Department of pharmaceutics, school of pharmacy, Urmia University of Medical sciences, Urmia, Iran. , leila.barghi@gmail.com
Abstract:   (1055 Views)
Background and Aim: Recently, nanostructured drug delivery systems have been investigated as delivery systems for chemotherapeutic agents in cancer treatment. The aim of this study was to review nanostructured carriers for targeted drug delivery of chemotherapeutic agents.
Materials and Methods: Data of this review article were collected by searching PubMed and WOS (Web of Science) using the keywords of cancer, nanomedicine, nanoparticles, liposome and solubility.
Results: Among the various nanostructured drug delivery systems, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), polymeric nanoparticles, micelles, albumin nanoparticles and drug-polymer conjugates have been used to develop the efficient delivery systems of chemotherapeutics for cancer treatment. Many chemotherapeutic drugs are highly hydrophobic with low aqueous solubility. Furthermore, non-specificity, toxicity and drug resistance are the main drawbacks of cancer treatment with chemotherapeutic drugs. Use of nanostructured delivery systems is the main approach to overcome drug resistance, reduce side effects and improve treatment efficacy. Additionally nanostructures containing two or more drugs for combination therapy of cancer are challenging issues that can increase the treatment efficiency by synergistic effects and decreasing drug resistance.
Conclusion: Although the development of various nanostructured drug delivery systems for chemotherapeutics are under investigation, few number of these systems have been used in clinical studies and entered the pharmaceutical market as approved nanomedicines
Keywords: Cancer, Nanomedicine, Nanoparticles, Liposome, Solubility
Full-Text [PDF 317 kb]   (242 Downloads)    
Type of Study: Review | Subject: Nano technology
Received: 2022/07/25 | Accepted: 2023/03/6 | Published: 2023/12/6
1. 1.Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer. 2018;103:356-38. Available from: URL doi: 10.1016/j.ejca.2018.07.005. [DOI:10.1016/j.ejca.2018.07.005] [PMID]
2. Ulldemolins A, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, et al. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist. 2021;4(1):44-68. Available from: URL doi: 10.20517/cdr.2020.59. [DOI:10.20517/cdr.2020.59] [PMID] []
3. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008;8(1):59-73. Available from: URL doi: 10.1038/nri2216. [DOI:10.1038/nri2216] [PMID]
4. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-Based Drug Delivery in Cancer Therapy and its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020;7: 193. Available from: URL doi: 10.3389/fmolb.2020.00193. [DOI:10.3389/fmolb.2020.00193] [PMID] []
5. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141-160. Available from: URL doi: 10.20517/cdr.2019.10. [DOI:10.20517/cdr.2019.10]
6. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7. Available from: URL doi: 10.1038/s41392-017-0004-3. [DOI:10.1038/s41392-017-0004-3] [PMID] []
7. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 2000;65(1):271-284. Available from: URL doi: 10.1016/s0168-3659(99)00248-5. [DOI:10.1016/S0168-3659(99)00248-5] [PMID]
8. Koo H, Huh MS, Sun I-C, Yuk SH, Choi K, Kim K, et al. In Vivo Targeted Delivery of Nanoparticles for Theranosis. Acc. Chem. Res. 2011;44(10):1018-1028. Available from: URL doi: 10.1021/ar2000138. [DOI:10.1021/ar2000138] [PMID]
9. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017;7(3):339-348. Available from: URL doi: 10.15171/apb.2017.041. [DOI:10.15171/apb.2017.041] [PMID] []
10. Fülöp T, Kozma GT, Vashegyi I, Mészáros T, Rosivall L, Urbanics R, et al. Liposome-induced hypersensitivity reactions: Risk reduction by design of safe infusion protocols in pigs. J. Control Release. 2019;309:333-338. Available from: URL doi: 10.1016/j.jconrel.2019.07.005. [DOI:10.1016/j.jconrel.2019.07.005] [PMID]
11. Xu H, He C, Liu Y, Jiang J, Ma T. Novel therapeutic modalities and drug delivery - erlotinib liposomes modified with galactosylated lipid: in vitro and in vivo investigations. Artif Cells Nanomed Biotechnol. 2018;46(8):1902-1907. Available from: URL doi: 10.1080/21691401.2017.1396222. [DOI:10.1080/21691401.2017.1396222]
12. Bakhtiary Z, Barar J, Aghanejad A, Saei AA, Nemati E, Ezzati Nazhad Dolatabadi J, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev. Ind. Pharm.2017;43(8):1244-1253. Available from: URL doi: 10.1080/03639045.2017.1310223. [DOI:10.1080/03639045.2017.1310223] [PMID]
13. Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci.Technol. 2019;51: 255-267. Available from: URL doi: 10.1016/j.jddst.2019.02.017. [DOI:10.1016/j.jddst.2019.02.017]
14. Balguri SP. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm. 2016;109:224-235. Available from: URL doi: 10.1016/j.ejpb.2016.10.015. [DOI:10.1016/j.ejpb.2016.10.015] [PMID] []
15. Barghi L, Aghanejad A, Valizadeh H, Barar J, Asgari D. Modified synthesis of erlotinib hydrochloride. Adv Pharm Bull. 2012;2(1):119-122. Available from: URL doi: 10.5681/apb.2012.017.
16. Barghi L, Asgari D, Barar J, Nakhlband A, Valizadeh H. Synthesis, characterization and in vitro anti-tumoral evaluation of Erlotinib-PCEC nanoparticles. APJCP. 2015;15(23):10281-10287. Available from: URL doi: 10.7314/apjcp.2014.15.23.10281. [DOI:10.7314/APJCP.2014.15.23.10281] [PMID]
17. Marslin G, Sheeba CJ, Kalaichelvan VK, Manavalan R, Neelakanta Reddy P, Franklin G. Poly (D, L-lactic-co-glycolic acid) Nanoencapsulation Reduces Erlotinib-Induced Subacute Toxicity in Rat. J Biomed Nanotechnol. 2009;5(5):464-471. Available from: URL doi: 10.1166/jbn.2009.1075. [DOI:10.1166/jbn.2009.1075] [PMID]
18. Werner ME, Cummings ND, Sethi M, Wang EC, Sukumar R, Moore DT, et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013;86(3):463-468. Available from: URL doi: 10.1016/j.ijrobp.2013.02.009. [DOI:10.1016/j.ijrobp.2013.02.009] [PMID] []
19. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138-157. Available from: URL doi: 10.1016/j.jconrel.2014.12.030. [DOI:10.1016/j.jconrel.2014.12.030] [PMID]
20. Yu X, Di Y, Xie C, Song Y, He H, Li H, et al. An in vitro and in vivo study of gemcitabine-loaded albumin nanoparticles in a pancreatic cancer cell line. Int J Nanomedicine. 2015;10:6825-6834. Available from: URL doi: 10.2147/IJN.S93835. [DOI:10.2147/IJN.S93835] [PMID] []
21. Moradpour Z, Barghi L. Novel Approaches for Efficient Delivery of Tyrosine Kinase Inhibitors. J Pharm Pharm Sci. 2019;22(1):37-48. Available from: URL doi: 10.18433/jpps29891. [DOI:10.18433/jpps29891] [PMID]
22. Wei Y, Xu S, Wang F, Zou A, Zhang S, Xiong Y, et al. A novel combined micellar system of lapatinib and paclitaxel with enhanced antineoplastic effect against human epidermal growth factor receptor-2 positive breast tumor in vitro. J. Pharm. Sci. 2015;104(1):165-177. Available from: URL doi: 10.1002/jps.24234. [DOI:10.1002/jps.24234] [PMID]
23. Hu H, Lin Z, He B, Dai W, Wang X, Wang J, et al. A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel. J Control Release. 2015;220(Pt A):189-200. Available from: URL doi: 10.1016/j.jconrel.2015.10.018. [DOI:10.1016/j.jconrel.2015.10.018] [PMID]
24. Setareh J, Jaleh V. Co-delivery of Curcumin and Imatinib by Nanostructured Lipid Carriers in the Treatment of Lymphoma. Int Pharm Acta. 2018;1(1):37-38. Available from: URL doi: 10.22037/ipa.v1i1.19945.
25. Katiyar SS, Muntimadugu E, Rafeeqi TA, Domb AJ, Khan W. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016;23(7):2608-2616. Available from: URL doi: 10.3109/10717544.2015.1039667. [DOI:10.3109/10717544.2015.1039667] [PMID]
26. Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. J. Biomater. Sci. Polym. Ed. 2020;31(9):1107-1126. Available from: URL doi: 10.1080/09205063.2020.1743946. [DOI:10.1080/09205063.2020.1743946] [PMID]
27. Ventola CL. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P&T. 2017;42(12):742-755.
28. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54(4):987-992.
29. Hamad I, Moghimi SM. Critical issues in site-specific targeting of solid tumours: the carrier, the tumour barriers and the bioavailable drug. Expert Opin. Drug Deliv. 2008;5(2):205-219. Available from: URL doi: 10.1517/17425247.5.2.205. [DOI:10.1517/17425247.5.2.205] [PMID]
30. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99. Available from: URL doi: 10.2147/ijn.s3061. [DOI:10.2147/IJN.S3061] [PMID] []
31. Mayer LD, Tardi P, Louie AC. CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int J Nanomedicine. 2019;14: 3819- 3830. Available from: URL doi: 10.2147/IJN.S139450. [DOI:10.2147/IJN.S139450] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barghi L. Nanostructured Drug Delivery Systems for Targeted Therapy of Cancer. SJKU 2023; 28 (5) :122-130
URL: http://sjku.muk.ac.ir/article-1-7460-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 5 (Scientific Journal of Kurdistan University of Medical Sciences 2023) Back to browse issues page
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4652