[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Journal Citation Index

 

Citation Indices from GS

AllSince 2019
Citations91005498
h-index3825
i10-index238139

 

..
Central Library of Kurdistan University of Medical Sciences
AWT IMAGE
..
Vice-Chancellery for Research and Technology
AWT IMAGE
..
SCImago Journal & Country Rank
:: Volume 28, Issue 4 (Scientific Journal of Kurdistan University of Medical Sciences 2023) ::
SJKU 2023, 28(4): 160-173 Back to browse issues page
Strategies for Application of Extracellular Vesicles in Solid Cancer Therapy
Jamal Majidpoor1 , Fardin Fathi2 , Keywan Mortezaee 3
1- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
2- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
3- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran. , mortezaee.k@muk.ac.ir
Abstract:   (559 Views)
Background and Aim: Extracellular vesicles (EVs) are key players in cellular communication and signaling in the health status and diseases. EVs have rather small size and long half-life upon secretion into circulation. This long half-life along with their immune privileged profile and the ability to carry biotherapeutics to the target cells have made EVs an issue of prominent current interest among scientists as an alternative schedule in cancer therapy.
Materials and Methods: PubMed and Google scholar were searched for relevant articles from journals with high impact factor. Among 400 articles found, 40 articles met the criteria for interpretation and were selected for descriptive review. Original and review articles published in the last ten years were used in this study.
Results: Tumor-derived EVs can be targeted for reducing cancer cell survival and increasing their apoptosis. They are also applicable for drug delivery to primary or metastatic tumors. An effective approach is to load nanoparticles into EVs for targeting a specific cell type in tumor ecosystem. Their application in nano delivery systems for cancer therapy has been the focus of attention.
Conclusion: The current studies have focused on the possibility of using EVs as biomarkers in several diseases, as targets to be removed for recovery of the patient health, and as vehicles for immunotherapy. In this review article, we discussed the importance of EV suppression or EV-based strategy for targeting solid cancers
Keywords: Extracellular vesicle (EV), Exosome, Cancer, Therapy
Full-Text [PDF 556 kb]   (113 Downloads)    
Type of Study: Review | Subject: Immunology
Received: 2022/10/25 | Accepted: 2023/01/1 | Published: 2023/09/27
References
1. 1. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerlinget E, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046-1057. Available from: https://doi.org/10.1016/j.cell.2015.04.042 [DOI:10.1016/j.cell.2015.04.042.] [PMID] []
2. Liu Y, Fan J, Xu T, Ahmadinejad N, Hess K, Lin SH, et al. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non-small cell lung cancer after concurrent chemoradiation. Sci Adv. 2020;6(11):eaaz6162. Available from: https://www.science.org/doi/10.1126/sciadv.aaz6162. [DOI:10.1126/sciadv.aaz6162] [PMID] []
3. Wang S, Kojima K, Mobley JA, West AB. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine. 2019;45:351-361. Available from: https://doi.org/10.1016/j.ebiom.2019.06.021 [DOI:10.1016/j.ebiom.2019.06.021.] [PMID] []
4. Urabe F, Kosaka N, Sawa Y, Yamamoto Y, Ito K, Yamamoto T, et al. miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Sci Adv. 2020;6(18):eaay3051. Available from: https://www.science.org/doi/10.1126/sciadv.aay3051. [DOI:10.1126/sciadv.aay3051] [PMID] []
5. Tian F, Zhang S, Liu C, Han Z, Liu Y, Deng J, et al. Protein analysis of extracellular vesicles to monitor and predict therapeutic response in metastatic breast cancer. Nat Commun. 2021;12(1):1-13. Available from: https://doi.org/10.1038/s41467-021-22913-7 [DOI:10.1038/s41467-021-22913-7.] [PMID] []
6. Najafi M, Majidpoor J, Toolee H, Mortezaee K. The current knowledge concerning solid cancer and therapy. J Biochem Mol Toxicol. 2021;35(11):e22900. Available from: https://doi.org/10.1002/jbt.22900 [DOI:10.1002/jbt.22900.] [PMID]
7. Sancho-Albero M, Rubio-Ruiz B, Pérez-López AM, Sebastián V, Martín-Duque P, Arruebo M, et al. Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat Catal. 2019;2(10):864-872. Available from: https://doi.org/10.1038/s41929-019-0333-4 [DOI:10.1038/s41929-019-0333-4.] [PMID] []
8. Erkan E, Senfter D, Madlener S, Jungwirth G, Ströbel T, Saydam N, et al. Extracellular vesicle-mediated suicide mRNA/protein delivery inhibits glioblastoma tumor growth in vivo. Cancer Gene Ther. 2017;24(1):38-44. Available from: https://doi.org/10.1038/cgt.2016.78 [DOI:10.1038/cgt.2016.78.] [PMID]
9. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016; 113(8):E968-E977. Available from: https://doi.org/10.1073/pnas.1521230113 [DOI:10.1073/pnas.1521230113.] [PMID] []
10. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9-17. Available from: https://doi.org/10.1038/s41556-018-0250-9 [DOI:10.1038/s41556-018-0250-9.] [PMID]
11. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H, et al. New technologies for analysis of extracellular vesicles. Chem Rev. 2018; 118(4):1917-1950. Available from: https://doi.org/10.1021/acs.chemrev.7b00534 [DOI:10.1021/acs.chemrev.7b00534.] [PMID] []
12. Mortezaee K, Majidpoor J, Fathi F. Extracellular vesicle isolation, purification and evaluation in cancer diagnosis. Exp Rev Mol Med. 2022;24:e41. Available from: https://doi.org/10.1017/erm.2022.34 [DOI:10.1017/erm.2022.34.] [PMID]
13. Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernández-Delgado I, Torralba D, Moreno-Gonzalo O, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7(1):1-11. Available from: https://doi.org/10.1038/ncomms13588 [DOI:10.1038/ncomms13588.] [PMID] []
14. Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019;10(1):1-12. Available from: https://doi.org/10.1038/s41467-019-11182-0 [DOI:10.1038/s41467-019-11182-0.] [PMID] []
15. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18(12):1835-1840. Available from: https://doi.org/10.1038/nm.2994 [DOI:10.1038/nm.2994.] [PMID] []
16. Guo M, Wu F, Hu G, Chen L, Xu J, Xu P, et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci Transl Med. 2019;11(474):eaat5690. Available from: https://www.science.org/doi/10.1126/scitranslmed.aat5690. [DOI:10.1126/scitranslmed.aat5690] [PMID]
17. Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 2018;10(444):eaat0195. Available from: https://www.science.org/doi/10.1126/scitranslmed.aat0195. [DOI:10.1126/scitranslmed.aat0195] [PMID]
18. Sterzenbach U, Putz U, Low LH, Silke J, Tan SS, Howitt J. Engineered exosomes as vehicles for biologically active proteins. Mol Ther. 2017;25(6):1269-1278. Available from: https://doi.org/10.1016/j.ymthe.2017.03.030 [DOI:10.1016/j.ymthe.2017.03.030.] [PMID] []
19. Ueta E, Tsutsumi K, Kato H, Matsushita H, Shiraha H, Fujii M, et al. Extracellular vesicle-shuttled miRNAs as a diagnostic and prognostic biomarker and their potential roles in gallbladder cancer patients. Sci Rep. 2021;11(1):1-13. Available from: https://doi.org/10.1038/s41598-021-91804-0 [DOI:10.1038/s41598-021-91804-0.] [PMID] []
20. Skog J, Würdinger T, Van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470-1476. Available from: https://doi.org/10.1038/ncb1800 [DOI:10.1038/ncb1800.] [PMID] []
21. Zheng X, Lu S, He Z, Huang H, Yao Z, Miao Y, et al. MCU-dependent negative sorting of miR-4488 to extracellular vesicles enhances angiogenesis and promotes breast cancer metastatic colonization. Oncogene. 2020;39(46):6975-6989. Available from: https://doi.org/10.1038/s41388-020-01514-6 [DOI:10.1038/s41388-020-01514-6.] [PMID]
22. Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol. 2021;226:108707. Available from: https://doi.org/10.1016/j.clim.2021.108707 [DOI:10.1016/j.clim.2021.108707.] [PMID]
23. DeRita RM, Sayeed A, Garcia V, Krishn SR, Shields CD, Sarker S, et al. Tumor-derived extracellular vesicles require β1 integrins to promote anchorage-independent growth. iScience. 2019;14:199-209. Available from: https://doi.org/10.1016/j.isci.2019.03.022 [DOI:10.1016/j.isci.2019.03.022.] [PMID] []
24. Tang S, Lian X, Jiang J, Cheng H, Guo J, Huang C, et al. Tumor suppressive maspin-sensitized prostate cancer to drug treatment through negative regulating androgen receptor expression. Front Cell Dev Biol. 2020;8:573820. Available from: https://doi.org/10.3389/fcell.2020.573820 [DOI:10.3389/fcell.2020.573820.] [PMID] []
25. Mortezaee K, Majidpoor J. Extracellular vesicle‑based checkpoint regulation and immune state in cancer. Med Oncol. 2022:39(12):225. Available from: https://doi.org/10.1007/s12032-022-01837-2 [DOI:10.1007/s12032-022-01837-2.] [PMID]
26. O'brien K, Khan S, Gilligan KE, Zafar H, Lalor P, Glynn C, et al. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene. 2018;37(16):2137-2149. Available from: https://doi.org/10.1038/s41388-017-0116-9 [DOI:10.1038/s41388-017-0116-9.] [PMID]
27. Yu S, Zhou Y, Niu L, Qiao Y, Yan Y. Mesenchymal stem cell-derived exosome mir-342-3p inhibits metastasis and chemo-resistance of breast cancer through regulating ID4. Genes Genomics. 2022;44(5):539-550. Available from: https://doi.org/10.1007/s13258-021-01200-1 [DOI:10.1007/s13258-021-01200-1.] [PMID]
28. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244-1247. Available from: https://www.science.org/doi/10.1126/science.1153124. [DOI:10.1126/science.1153124] [PMID]
29. Christianson HC, Svensson KJ, Van Kuppevelt TH, Li JP, Belting M, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA. 2013;110(43):17380-17385. Available from: https://doi.org/10.1073/pnas.1304266110 [DOI:10.1073/pnas.1304266110.] [PMID] []
30. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677-685. Available from: https://doi.org/10.1038/ncb2502 [DOI:10.1038/ncb2502.] [PMID]
31. Esposito CL, Quintavalle C, Ingenito F, Rotoli D, Roscigno G, Nuzzo S, et al. Identification of a novel RNA aptamer that selectively targets breast cancer exosomes. Mol Ther Nucleic Acids. 2021;23:982-994. Available from: https://doi.org/10.1016/j.omtn.2021.01.012 [DOI:10.1016/j.omtn.2021.01.012.] [PMID] []
32. Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther. 2013;21(1):101-108. Available from: https://doi.org/10.1038/mt.2012.161 [DOI:10.1038/mt.2012.161.] [PMID] []
33. Samuel M, Fonseka P, Sanwlani R, Gangoda L, Chee SH, Keerthikumar S, et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat Commun. 2021;12(1):1-16. Available from: https://doi.org/10.1038/s41467-021-24273-8 [DOI:10.1038/s41467-021-24273-8.] [PMID] []
34. Hao M, Yeo SK, Turner K, Harold A, Yang Y, Zhang X, et al. Autophagy blockade limits HER2+ breast cancer tumorigenesis by perturbing HER2 trafficking and promoting release via small extracellular vesicles. Dev Cell. 2021;56(3):341-355.e5. Available from: https://doi.org/10.1016/j.devcel.2020.12.016 [DOI:10.1016/j.devcel.2020.12.016.] [PMID]
35. Sang H, Zhang W, Peng L, Wei S, Zhu X, Huang K, et al. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis. 2022;13(1):1-11. Available from: https://doi.org/10.1038/s41419-021-04364-6 [DOI:10.1038/s41419-021-04364-6.] [PMID] []
36. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498-503. Available from: https://doi.org/10.1038/nature22341 [DOI:10.1038/nature22341.] [PMID] []
37. Rao L, Wu L, Liu Z, Tian R, Yu G, Zhou Z, et al. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nat Commun. 2020;11(1):1-13. Available from: https://doi.org/10.1038/s41467-020-18626-y [DOI:10.1038/s41467-020-18626-y.] [PMID] []
38. Pan S, Zhang Y, Natalia A, Lim CZJ, Ho NRY, Chowbay B, et al. Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy. Nat Nanotechnol. 2021;16(6):734-742. Available from: https://doi.org/10.1038/s41565-021-00872-w [DOI:10.1038/s41565-021-00872-w.] [PMID]
39. Park J, Park JS, Huang CH, Jo A, Cook K, Wang R, et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat Biomed Eng. 2021;5(7):678-689. Available from: https://doi.org/10.1038/s41551-021-00752-7 [DOI:10.1038/s41551-021-00752-7.] [PMID] []
40. Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6(1):1-9. Available from: https://doi.org/10.1038/ncomms7999 [DOI:10.1038/ncomms7999.] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

majidpoor J, fathi F, Mortezaee K. Strategies for Application of Extracellular Vesicles in Solid Cancer Therapy. SJKU 2023; 28 (4) :160-173
URL: http://sjku.muk.ac.ir/article-1-7635-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 4 (Scientific Journal of Kurdistan University of Medical Sciences 2023) Back to browse issues page
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4645