1- MSc of Immunology, Department of Immunology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. 2- Student Research Committee, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. 3- MSc of Immunology, Department of Immunology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran 4- Allergy and Clinical Immunology Fellowship, Department of Pediatrics, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. 5- Associated professor of Immunology, Department of Immunology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. 6- Assistant professor of immunology, Department of Immunology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. 7- Assistant professor of immunology, Department of Immunology, Faculty of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard , alireza.rezaiemanesh@kums.ac.ir
Abstract: (1246 Views)
Background and Aim: Allergic rhinitis is the most common chronic inflammatory disorder of the nasal mucosa. Long non-coding RNAs (lncRNA) are a group of non-coding RNAs involved in the pathogenesis of various inflammatory diseases. This study intended to evaluate the expression of long non-coding RNAs NEAT1, H19, and MALAT1 in patients with allergic rhinitis (AR) before and after treatment with budesonide and fexofenadine in comparison with fluticasone propionate and fexofenadine. Materials and Methods:Blood samples were taken from 53 patients with allergic rhinitis (including 29 patients treated with budesonide and fexofenadine and 24 patients treated with fluticasone propionate and fexofenadine) before and one month after the initiation of treatment. The mRNA expression levels of NEAT1, H19, and MALAT1 were measured by the Real-Time PCR method. Results: Our results showed that mRNA expression levels of H19 and MALAT1 significantly increased after treatment with budesonide and fexofenadine (p= 0.001, p = 0.002, respectively), while mRNAs expression levels of NEAT1 and H19 significantly decreased after treatment with fluticasone propionate and fexofenadine (p= 0.014, p= 0.036, respectively). Conclusion: The combination of budesonide and fexofenadine by increasing the expression levels of MALAT1 and the combination of fluticasone propionate and fexofenadine by decreasing the expression level of NEAT1 and H19 were effective in reducing the clinical symptoms of allergic rhinitis patients.
Type of Study: Original Research |
Subject: Immunology Received: 2021/11/17 | Accepted: 2022/05/16 | Published: 2023/03/15
References
1. Small P, Frenkiel S, Becker A, Boisvert P, Bouchard J, Carr S, et al. Rhinitis: A Practical and Comprehensive Approach to Assessment and Therapy. J Otolaryngol. 2007;36. [DOI:10.2310/7070.2006.X002]
2. Brożek JL, Bousquet J, Agache I, Agarwal A, Bachert C, Bosnic-Anticevich S, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950-8. [DOI:10.1016/j.jaci.2017.03.050] [PMID]
3. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861-74. [DOI:10.1038/nrg3074] [PMID]
4. Liu Y, Zhang R, Ying K. Long non‑coding RNAs: Novel links in respiratory diseases. Mol Med Rep. 2015;11(6):4025-31. [DOI:10.3892/mmr.2015.3290] [PMID]
5. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin β 4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031-41. [DOI:10.1038/sj.onc.1206928] [PMID]
6. Faith A, Corrigan C, Hawrylowicz CM. Dendritic cells, macrophages and monocytes in allergic disease. Allergy Frontiers: Classification and Pathomechanisms: Springer; 2009. p. 195-207. [DOI:10.1007/978-4-431-88315-9_13]
7. Cui H, Banerjee S, Guo S, Xie N, Ge J, Jiang D, et al. Long noncoding RNA Malat1 regulates differential activation of macrophages and response to lung injury. JCI Insight. 2019;4(4). [DOI:10.1172/jci.insight.124522] [PMID] []
8. Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNAMALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180-9. [DOI:10.1158/0008-5472.CAN-12-2850] [PMID] []
9. Wu J, Zhang H, Zheng Y, Jin X, Liu M, Li S, et al. The long noncoding rna malat1 induces tolerogenic dendritic cells and regulatory t cells via mir155/dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin/il10 axis. Front Immunol. 2018;9:1847. [DOI:10.3389/fimmu.2018.01847] [PMID] []
10. Sun W, Wei JW, Li H, Wei FQ, Li J, Wen WP, editors. Adoptive cell therapy of tolerogenic dendritic cells as inducer of regulatory T cells in allergic rhinitis. Int Forum Allergy Rhinol; 2018: Wiley Online Library. [DOI:10.1002/alr.22217] [PMID]
11. Huang S, Dong D, Zhang Y, Chen Z, Geng J, Zhao Y. NEAT1 regulates Th2 cell development by targeting STAT6 for degradation. Cell Cycle2019;18(3):312-9. [DOI:10.1080/15384101.2018.1562285] [PMID] []
12. Li X, Ye S, Lu Y. Long non‐coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA‐124 in asthma. J Clin Lab Anal. 2020;34(1):e23023. [DOI:10.1002/jcla.23023] [PMID] []
13. Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep. 2020:1-18. [DOI:10.1007/s11033-020-05695-x] [PMID]
14. Wang B, Suen CW, Ma H, Wang Y, Kong L, Qin D, et al. The Roles of H19 in Regulating Inflammation and Aging. Front Immunol. 2020;11:2769. [DOI:10.3389/fimmu.2020.579687] [PMID] []
15. Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation and fibrosis in acute respiratory distress syndrome rats through regulating MicroRNA-423- 5p/FOXA1 axis. 2021;47(4):183-97 [DOI:10.1080/01902148.2021.1887967] [PMID]
16. Lu Q, Guo Z, Xie W, Jin W, Zhu D, Chen S, et al. The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 axis. Inflamm. 2018;41(3):896-903. [DOI:10.1007/s10753-018-0744-4] [PMID]
17. Paolieri F, Battifora M, Riccio AM, Bertolini C, Ciprandi G, Canonica G, et al. Terfenadine and fexofenadine reduce in vitro ICAM-1 expression on human continuous cell lines. Ann Allergy Asthma Immunol. 1998;81(6):601-7. [DOI:10.1016/S1081-1206(10)62712-3] [PMID]
18. Van Cauwenberge P, Bachert C, Passalacqua G, Bousquet J, Canonica G, Durham S, et al. Consensus statement* on the treatment of allergic rhinitis. ALGY. 2000;55(2):116-34 . [DOI:10.1034/j.1398-9995.2000.00526.x] [PMID]
19. Ciprandi G, Canonica W, Grosclaude M, Ostinelli J, Brazzola G, Bousquet J. Effects ofbudesonide and fluticasone propionate in a placebo‐controlled study on symptoms and quality of life in seasonal allergic rhinitis. ALGY. 2002;57(7):586-91. [DOI:10.1034/j.1398-9995.2002.03228.x] [PMID]
20. Day J, Carrillo T. Comparison of the efficacy of budesonide and fluticasone propionate aqueous nasal spray for once daily treatment of perennial allergic rhinitis. J Allergy Clin Immunol. 1998;102(6):902-8. [DOI:10.1016/S0091-6749(98)70326-4] [PMID]
21. Wang X, Du K, She W, Ouyang Y, Sima Y, Liu C, et al. Recent advances in the diagnosis of allergic rhinitis. Expert Rev Clin. 2018;14(11):957-64. [DOI:10.1080/1744666X.2018.1530113] [PMID]
22. Ma Z, Teng Y, Liu X, Li J, Mo J, Sha M, et al. Identification and functional profiling of differentially expressed long non-coding RNAs in nasal mucosa with allergic rhinitis. Tohoku J Exp Med. 2017;242(2):143-50. [DOI:10.1620/tjem.242.143] [PMID]
23. Zhang X, Hong R, Chen W, Xu M, Wang L. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019;92:103214. [DOI:10.1016/j.bioorg.2019.103214] [PMID]
24. Bartlett AA, Lapp HE, Hunter RG. Epigenetic mechanisms of the glucocorticoid receptor. Trends Endocrinol Metab. 2019;30(11):807-18. [DOI:10.1016/j.tem.2019.07.003] [PMID]
25. Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genom Proteom Bioinform. 2017;15(3):177-86. [DOI:10.1016/j.gpb.2016.12.005] [PMID] []
26. Chen J, Ao L, Yang J. Long non-coding RNAs in diseases related to inflammation and immunity. Ann Transl Med. 2019;7(18):494. [DOI:10.21037/atm.2019.08.37] [PMID] []
28. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest-and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107): ra8. [DOI:10.1126/scisignal.2000568] [PMID] []
29. Rao NA, McCalman MT, Moulos P, Francoijs K-J, Chatziioannou A, Kolisis FN, et al. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res. 2011;21(9):1404-16. [DOI:10.1101/gr.118042.110] [PMID] []
30. Wang R, Xue S, Liu Y, Peng M, Guo B. The correlation of long non-coding RNA NEAT1 and its targets microRNA (miR)-21, miR-124, and miR-125a with disease risk, severity, and inflammation of allergic rhinitis. Medicine. 2021;100(4). [DOI:10.1097/MD.0000000000022946] [PMID] []
31. Wang X, Cheng Z, Dai L, Jiang T, Jia L, Jing X, et al. Knockdown of lncRNA H19 represses the progress of pulmonary fibrosis through the TGF-β/Smad3 pathway by regulating miR-140. Mol Cell Biol. 2019;39(12):e00143-19. [DOI:10.1128/MCB.00143-19] [PMID] []
32. Liang Z, Tang F. The potency of lncRNA MALAT1/miR-155/CTLA4 axis in altering Th1/Th2 balance of asthma. Biosci Rep. 2020;40(2): BSR20190397.. [DOI:10.1042/BSR20190397] [PMID] []
33. Li Z, Zhang Q, Wu Y, Hu F, Gu L, Chen T, et al. lncRNA Malat1 modulates the maturation process, cytokine secretion and apoptosis in airway epithelial cell‑conditioned dendritic cells. Exp Ther Med. 2018;16(5):3951-8. [DOI:10.3892/etm.2018.6687] [PMID] []
35. Arunjyothi, Rupa, Prudhwi, editors. To Compare the Therapeutic Efficacy and Safety of Fexofenadine With Chlorpheniramine and Betamethasone (Oral) in the Treatment of Allergic Rhinitis. INDIAN JOURNAL OF PHARMACOLOGY; 2013: MEDKNOW PUBLICATIONS & MEDIA PVT LTD B-9, KANARA BUSINESS CENTRE, OFF LINK ….
36. Small P, Frenkiel S, Becker A, Boisvert P, Bouchard J, Carr S, et al. Rhinitis: A Practical and Comprehensive Approach to Assessment and Therapy. J Otolaryngol. 2007;36. [DOI:10.2310/7070.2006.X002]
37. Brożek JL, Bousquet J, Agache I, Agarwal A, Bachert C, Bosnic-Anticevich S, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950-8. [DOI:10.1016/j.jaci.2017.03.050] [PMID]
38. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861-74. [DOI:10.1038/nrg3074] [PMID]
39. Liu Y, Zhang R, Ying K. Long non‑coding RNAs: Novel links in respiratory diseases. Mol Med Rep. 2015;11(6):4025-31. [DOI:10.3892/mmr.2015.3290] [PMID]
40. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin β 4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031-41. [DOI:10.1038/sj.onc.1206928] [PMID]
41. Faith A, Corrigan C, Hawrylowicz CM. Dendritic cells, macrophages and monocytes in allergic disease. Allergy Frontiers: Classification and Pathomechanisms: Springer; 2009. p. 195-207. [DOI:10.1007/978-4-431-88315-9_13]
42. Cui H, Banerjee S, Guo S, Xie N, Ge J, Jiang D, et al. Long noncoding RNA Malat1 regulates differential activation of macrophages and response to lung injury. JCI Insight. 2019;4(4). [DOI:10.1172/jci.insight.124522] [PMID] []
43. Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNAMALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180-9. [DOI:10.1158/0008-5472.CAN-12-2850] [PMID] []
44. Wu J, Zhang H, Zheng Y, Jin X, Liu M, Li S, et al. The long noncoding rna malat1 induces tolerogenic dendritic cells and regulatory t cells via mir155/dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin/il10 axis. Front Immunol. 2018;9:1847. [DOI:10.3389/fimmu.2018.01847] [PMID] []
45. Sun W, Wei JW, Li H, Wei FQ, Li J, Wen WP, editors. Adoptive cell therapy of tolerogenic dendritic cells as inducer of regulatory T cells in allergic rhinitis. Int Forum Allergy Rhinol; 2018: Wiley Online Library. [DOI:10.1002/alr.22217] [PMID]
46. Huang S, Dong D, Zhang Y, Chen Z, Geng J, Zhao Y. NEAT1 regulates Th2 cell development by targeting STAT6 for degradation. Cell Cycle2019;18(3):312-9. [DOI:10.1080/15384101.2018.1562285] [PMID] []
47. Li X, Ye S, Lu Y. Long non‐coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA‐124 in asthma. J Clin Lab Anal. 2020;34(1):e23023. [DOI:10.1002/jcla.23023] [PMID] []
48. Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep. 2020:1-18. [DOI:10.1007/s11033-020-05695-x] [PMID]
49. Wang B, Suen CW, Ma H, Wang Y, Kong L, Qin D, et al. The Roles of H19 in Regulating Inflammation and Aging. Front Immunol. 2020;11:2769. [DOI:10.3389/fimmu.2020.579687] [PMID] []
50. Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation and fibrosis in acute respiratory distress syndrome rats through regulating MicroRNA-423- 5p/FOXA1 axis. 2021;47(4):183-97 [DOI:10.1080/01902148.2021.1887967] [PMID]
51. Lu Q, Guo Z, Xie W, Jin W, Zhu D, Chen S, et al. The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 axis. Inflamm. 2018;41(3):896-903. [DOI:10.1007/s10753-018-0744-4] [PMID]
52. Paolieri F, Battifora M, Riccio AM, Bertolini C, Ciprandi G, Canonica G, et al. Terfenadine and fexofenadine reduce in vitro ICAM-1 expression on human continuous cell lines. Ann Allergy Asthma Immunol. 1998;81(6):601-7. [DOI:10.1016/S1081-1206(10)62712-3] [PMID]
53. Van Cauwenberge P, Bachert C, Passalacqua G, Bousquet J, Canonica G, Durham S, et al. Consensus statement* on the treatment of allergic rhinitis. ALGY. 2000;55(2):116-34 . [DOI:10.1034/j.1398-9995.2000.00526.x] [PMID]
54. Ciprandi G, Canonica W, Grosclaude M, Ostinelli J, Brazzola G, Bousquet J. Effects ofbudesonide and fluticasone propionate in a placebo‐controlled study on symptoms and quality of life in seasonal allergic rhinitis. ALGY. 2002;57(7):586-91. [DOI:10.1034/j.1398-9995.2002.03228.x] [PMID]
55. Day J, Carrillo T. Comparison of the efficacy of budesonide and fluticasone propionate aqueous nasal spray for once daily treatment of perennial allergic rhinitis. J Allergy Clin Immunol. 1998;102(6):902-8. [DOI:10.1016/S0091-6749(98)70326-4] [PMID]
56. Wang X, Du K, She W, Ouyang Y, Sima Y, Liu C, et al. Recent advances in the diagnosis of allergic rhinitis. Expert Rev Clin. 2018;14(11):957-64. [DOI:10.1080/1744666X.2018.1530113] [PMID]
57. Ma Z, Teng Y, Liu X, Li J, Mo J, Sha M, et al. Identification and functional profiling of differentially expressed long non-coding RNAs in nasal mucosa with allergic rhinitis. Tohoku J Exp Med. 2017;242(2):143-50. [DOI:10.1620/tjem.242.143] [PMID]
58. Zhang X, Hong R, Chen W, Xu M, Wang L. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019;92:103214. [DOI:10.1016/j.bioorg.2019.103214] [PMID]
59. Bartlett AA, Lapp HE, Hunter RG. Epigenetic mechanisms of the glucocorticoid receptor. Trends Endocrinol Metab. 2019;30(11):807-18. [DOI:10.1016/j.tem.2019.07.003] [PMID]
60. Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genom Proteom Bioinform. 2017;15(3):177-86. [DOI:10.1016/j.gpb.2016.12.005] [PMID] []
61. Chen J, Ao L, Yang J. Long non-coding RNAs in diseases related to inflammation and immunity. Ann Transl Med. 2019;7(18):494. [DOI:10.21037/atm.2019.08.37] [PMID] []
63. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest-and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107): ra8. [DOI:10.1126/scisignal.2000568] [PMID] []
64. Rao NA, McCalman MT, Moulos P, Francoijs K-J, Chatziioannou A, Kolisis FN, et al. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res. 2011;21(9):1404-16. [DOI:10.1101/gr.118042.110] [PMID] []
65. Wang R, Xue S, Liu Y, Peng M, Guo B. The correlation of long non-coding RNA NEAT1 and its targets microRNA (miR)-21, miR-124, and miR-125a with disease risk, severity, and inflammation of allergic rhinitis. Medicine. 2021;100(4). [DOI:10.1097/MD.0000000000022946] [PMID] []
66. Wang X, Cheng Z, Dai L, Jiang T, Jia L, Jing X, et al. Knockdown of lncRNA H19 represses the progress of pulmonary fibrosis through the TGF-β/Smad3 pathway by regulating miR-140. Mol Cell Biol. 2019;39(12):e00143-19. [DOI:10.1128/MCB.00143-19] [PMID] []
67. Liang Z, Tang F. The potency of lncRNA MALAT1/miR-155/CTLA4 axis in altering Th1/Th2 balance of asthma. Biosci Rep. 2020;40(2): BSR20190397.. [DOI:10.1042/BSR20190397] [PMID] []
68. Li Z, Zhang Q, Wu Y, Hu F, Gu L, Chen T, et al. lncRNA Malat1 modulates the maturation process, cytokine secretion and apoptosis in airway epithelial cell‑conditioned dendritic cells. Exp Ther Med. 2018;16(5):3951-8. [DOI:10.3892/etm.2018.6687] [PMID] []
70. Arunjyothi, Rupa, Prudhwi, editors. To Compare the Therapeutic Efficacy and Safety of Fexofenadine With Chlorpheniramine and Betamethasone (Oral) in the Treatment of Allergic Rhinitis. INDIAN JOURNAL OF PHARMACOLOGY; 2013: MEDKNOW PUBLICATIONS & MEDIA PVT LTD B-9, KANARA BUSINESS CENTRE, OFF LINK ….
Asadi G, Falahi S, Rajabinejad M, Feizollahi P, Mortazavi S H, Gorgin Karaji A, et al . Altered Expression of Long Non-Coding RNAs NEAT1, H19, and MALAT1 in Peripheral Blood Cells of Patients with Allergic Rhinitis after Treatment with Pharmaceutical Combinations of Budesonide and Fexofenadine versus Fluticasone Propionate and Fexofenadine. SJKU 2023; 28 (1) :74-86 URL: http://sjku.muk.ac.ir/article-1-7093-en.html