[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Journal Citation Index

 

Citation Indices from GS

AllSince 2020
Citations98585247
h-index3925
i10-index255127

 

..
Central Library of Kurdistan University of Medical Sciences
AWT IMAGE
..
Vice-Chancellery for Research and Technology
AWT IMAGE
..
SCImago Journal & Country Rank
:: Volume 28, Issue 1 (Scientific Journal of Kurdistan University of Medical Sciences 2023) ::
SJKU 2023, 28(1): 20-29 Back to browse issues page
Evaluation of the Antifungal Effect of Fluconazole Separately and with Coriander Essential Oil on Candida Species Isolated from the Mouth of HIV-Positive Individuals
Vida Abdi1 , Parvin Dehghan 2, Behzad Zolfaghari3 , Mehrnoush Maheronnaghsh4 , Asghar Heidarian5
1- MSc student, Department of Mycology and Parasitology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2- Associate Professor, Department of Mycology and Parasitology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran , dehghan@med.mui.ac.ir
3- Professor, Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
4- Assistant Professor, Department of Mycology and Parasitology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
5- Staff, Isfahan Health Center , Isfahan University of Medical Sciences, Isfahan, Iran
Abstract:   (1468 Views)
Background and Aim: Candida species are opportunistic yeasts that can cause opportunistic infections when the host becomes debilitated or immunocompromised. Coriander is a plant belonging to the Umbelliferae family and its leaves and seeds are widely used in traditional medicine. Coriander essential oil (E.O.) has shown antibacterial, antifungal, and antioxidant activities. This study aimed to evaluate the antifungal effect of fluconazole alone and with coriander E.O on 39 Candida species isolated from the mouth of Human Immunodeficiency Virus (HIV) positive individuals.
Materials and Methods: In this study, the broth microdilution tests according to the CLSI M27-S3 were applied to find the amount of Minimum inhibitory concentration (MIC) of fluconazole alone and together with coriander E.O (synergism) for each Candida isolate. For this purpose, the E.O. of Coriander seeds was extracted using a Clevenger apparatus by steam hydro-distillation, and then the synergism effect of E.O. and fluconazole on Candida isolates was investigated. Data were analyzed by SPSS-25 software. Mann-Whitney, and Tukey post hoc tests, and the one-way analysis of variance were used to analyze the results.
Results: Susceptibility of fluconazole was determined as follows: 69.2% of the Candida isolates were sensitive, 17.9% were resistant and 12.9% were susceptible dose-dependent (SDD). The MIC mean was 27.3 μg/ml for fluconazole, 32.7 μg/ml for coriander E.O, and 9.39 μg/ml for the combined effect of fluconazole and Coriander E.O (synergistic effects).
Conclusion: The fact that Coriander E.O has an inhibitory effect on all Candida isolates used in this study, it can be considered a capable antifungal, especially in combination with fluconazole (synergistic effects), and the antifungal effect of Coriander E.O is proposed to investigate in treating candidiasis for future clinical trials.
Keywords: Candida species, AIDS, Coriander, Antimicrobial, Fluconazole.
Full-Text [PDF 1084 kb]   (624 Downloads)    
Type of Study: Applicable | Subject: Parasitology and Mycology
Received: 2021/04/13 | Accepted: 2021/10/20 | Published: 2023/03/15
References
1. Noshad M, Hojjati M, Behbahani BA. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microb Pathog. 2018;116:153. [DOI:10.1016/j.micpath.2018.01.026] [PMID]
2. Jackson BE, Wilhelmus KR, Mitchell BM. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Microb Pathog. 2007;42(2-3):88. [DOI:10.1016/j.micpath.2006.11.005] [PMID] []
3. Africa CWJ, dos Santos Abrantes PM. Candida antifungal drug resistance in sub-Saharan African populations: A systematic review. F1000Research. 2016;5. [DOI:10.12688/f1000research.10327.1] [PMID] []
4. Haghdoost AA, Mostafavi E, Mirzazadeh A, Navadeh S, Feizzadeh A, Fahimfar N, et al. Modelling of HIV/AIDS in Iran up to 2014. JAHR. 2011;3(12):231. [DOI:10.5897/JAHR11.030]
5. Schwarcz L, Chen M-J, Vittinghoff E, Hsu L, Schwarcz S. Declining incidence of AIDS-defining opportunistic illnesses: results from 16 years of population-based AIDS surveillance. Aids. 2013;27(4):597. [DOI:10.1097/QAD.0b013e32835b0fa2] [PMID]
6. Terças AL, Marques SG, Moffa EB, Alves MB, de Azevedo CM, Siqueira WL, et al. Antifungal drug susceptibility of Candida species isolated from HIV-positive patients recruited at a public hospital in São Luís, Maranhão, Brazil. Front Microbiol. 2017;8:298. [DOI:10.3389/fmicb.2017.00298] [PMID] []
7. Patil S, Majumdar B, Sarode SC, Sarode GS, Awan KH. Oropharyngeal Candidosis in HIV Infected Patients-An Update. Front Microbiol. 2018;9:980. [DOI:10.3389/fmicb.2018.00980] [PMID] []
8. de Almeida Freires I, Murata RM, Furletti VF, Sartoratto A, de Alencar SM, Figueira GM, et al. Coriandrum sativum L(coriander) essential oil: antifungal activity and mode of action on Candida spp and molecular targets affected in human whole-genome expression. PLoS One. 2014;9(6):e99086. [DOI:10.1371/journal.pone.0099086] [PMID] []
9. Osaigbovo II, Lofor PV, Oladele RO. Fluconazole resistance among oral Candida isolates from people living with HIV/AIDS in a Nigerian tertiary hospital. J Fungi 2017;3(4):69. [DOI:10.3390/jof3040069] [PMID] []
10. Morschhäuser J. The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys. Acta Mol Ba. 2002;1587(2-3):240. [DOI:10.1016/S0925-4439(02)00087-X]
11. Dassanayake R, Ellepola A, Samaranayake Y, Samaranayak L. Molecular heterogeneity of fluconazole resistant and susceptible oral Candida albicans isolates within a single geographic locale. Apmis. 2002;110(4):315. [DOI:10.1034/j.1600-0463.2002.100406.x] [PMID]
12. Azhdarzadeh F, Hojjati M. Chemical composition and antimicrobial activity of leaf, ripe and unripe peel of bitter orange (Citrus aurantium) essential oils. Nutr Food Sci. 2016;3(1):43. [DOI:10.18869/acadpub.nfsr.3.1.43]
13. Eikani MH, Golmohammad F, Rowshanzamir S. Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L). J Food Eng . 2007;80(2):735. [DOI:10.1016/j.jfoodeng.2006.05.015]
14. Menezes RdP, Borges AS, Araujo LBd, Pedroso RDS, Röder Dvddb. Related factors for colonization by Candida species in the oral cavity of HIV-infected individuals. Rev Inst Med Trop Sao Paulo .2015;57(5):413. [DOI:10.1590/S0036-46652015000500008] [PMID] []
15. Heidarian A, Dehghan P, Chadeganipour M, Tayeri K. Frequency of Candida species isolated from the Oral Cavity of HIV-Infected Patients referring to Behavioral disease Counseling Center of Isfahan in 2017-2018. Sci J Kurd Univ Med Sci.2019;24(5):30. [DOI:10.29252/sjku.24.5.30]
16. Fothergill AW. Antifungal susceptibility testing: clinical laboratory and standards institute (CLSI) methods. Interactions of yeasts, moulds, and antifungal agents: Springer. 2012. p. 65. [DOI:10.1007/978-1-59745-134-5_2]
17. Patel PK, Erlandsen JE, Kirkpatrick WR, Berg DK, Westbrook SD, Louden C, et al. The changing epidemiology of oropharyngeal candidiasis in patients with HIV/AIDS in the era of antiretroviral therapy. AIDS Res Ther . 2012;2012. [DOI:10.1155/2012/262471] [PMID] []
18. Goulart LS, Souza Wwrd, Vieira CA, Lima JSd, Olinda RAd, Araújo Cd. Oral colonization by Candida species in HIV-positive patients: association and antifungal susceptibility study. Einstein (São Paulo). 2018;16(3). [DOI:10.1590/s1679-45082018ao4224] [PMID] []
19. Eyres G, Dufour JP, Hallifax G, Sotheeswaran S, Marriott PJ. Identification of character impact odorants in Coriander and wild Coriander leaves using gas chromatography olfactometry (GCO) and comprehensive two dimensional gas chromatography time of flight mass spectrometry (GC× GC-TOFMS). J Sep Sci. 2005;28(9-10):1061. [DOI:10.1002/jssc.200500012] [PMID]
20. Begnami A, Duarte M, Furletti V, Rehder V. Antimicrobial potential of Coriandrum sativum L against different Candida species in vitro. Food chemistry. 2010;118(1):74. [DOI:10.1016/j.foodchem.2009.04.089]
21. Silva F, Ferreira S, Duarte A, Mendonca DI, Domingues FC. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine. 2011;19(1):42. [DOI:10.1016/j.phymed.2011.06.033] [PMID]
22. Bersan SM, Galvão LC, Goes VF, Sartoratto A, Figueira GM, Rehder VL, et al. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement Altern Med . 2014;14(1):1-2. [DOI:10.1186/1472-6882-14-451] [PMID] []
23. Beikert F, Anastasiadou Z, Fritzen B, Frank U, Augustin M. Topical treatment of tinea pedis using 6% Coriander oil in unguentum leniens: a randomized, controlled, comparative pilot study. Dermatology. 2013;226(1):47. [DOI:10.1159/000346641] [PMID]
24. Yahyaabadi S, Zibanejad E, Doudi M. Effect of some of plant extracts on the growth of two Aspergillus species. J Herb Drug 2011;2(1):69.
25. Mahoney MJ, Anseth KS. Contrasting effects of collagen and bFGF-2 on neural cell function in degradable synthetic PEG hydrogels. Journal of biomedical materials research Part A. 2007;81(2):269-78. [DOI:10.1002/jbm.a.30970] [PMID]
26. Tatard VM, D'Ippolito G, Diabira S, Valeyev A, Hackman J, McCarthy M, et al. Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons. Bone. 2007;40(2):360-73. [DOI:10.1016/j.bone.2006.09.013] [PMID]
27. Xie X, Liu H, Wu J, Chen Y, Yu Z, De Isla N, et al. Rat BMSC infusion was unable to ameliorate inflammatory injuries in tissues of mice with LPS-induced endotoxemia. Bio-medical materials and engineering. 2017;28(s1):S129-S38. [DOI:10.3233/BME-171634] [PMID]
28. Ye Y, Peng YR, Hu SQ, Yan XL, Chen J, Xu T. In Vitro Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells by Cerebrospinal Fluid Improves Motor Function of Middle Cerebral Artery Occlusion Rats. Frontiers in neurology. 2016;7:183. [DOI:10.3389/fneur.2016.00183] [PMID] []
29. Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Progress in neurobiology. 2017. [DOI:10.1016/j.pneurobio.2017.03.003] [PMID] []
30. Onifer SM, Rabchevsky AG, Scheff SW. Rat models of traumatic spinal cord injury to assess motor recovery. ILAR journal. 2007;48(4):385-95. [DOI:10.1093/ilar.48.4.385] [PMID]
31. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. Journal of materials science Materials in medicine. 2016;27(4):77. [DOI:10.1007/s10856-016-5684-7] [PMID] []
32. Joosten EA. Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle. Cell and tissue research. 2012;349(1):375-95. [DOI:10.1007/s00441-012-1352-5] [PMID] []
33. Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, et al. Hydrogels in spinal cord injury repair strategies. ACS chemical neuroscience. 2011;2(7):336-45. [DOI:10.1021/cn200030w] [PMID] []
34. Matyash M, Despang F, Mandal R, Fiore D, Gelinsky M, Ikonomidou C. Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress. Tissue engineering Part A. 2012;18(1-2):55-66. [DOI:10.1089/ten.tea.2011.0097] [PMID]
35. Abd El-Rehim HA, El-Sawy NM, Hegazy el SA, Soliman el SA, Elbarbary AM. Improvement of antioxidant activity of chitosan by chemical treatment and ionizing radiation. Int J Biol Macromol. 2012;50(2):403-13. [DOI:10.1016/j.ijbiomac.2011.12.021] [PMID]
36. Kelishomi ZH, Goliaei B, Mahdavi H, Nikoofar A, Rahimi M, Moosavi-Movahedi AA, et al. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food chemistry. 2016;196:897-902. [DOI:10.1016/j.foodchem.2015.09.091] [PMID]
37. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state. Pharmacological reviews. 2002;54(2):271-84. [DOI:10.1124/pr.54.2.271] [PMID]
38. Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cellular and molecular neurobiology. 1998;18(6):667-82. https://doi.org/10.1023/A:1020685903186 [DOI:10.1023/A:1020221919154] [PMID]
40. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC cell biology. 2006;7:14. [DOI:10.1186/1471-2121-7-14] [PMID] []
41. Li XH, Fu YH, Lin QX, Liu ZY, Shan ZX, Deng CY, et al. Induced bone marrow mesenchymal stem cells improve cardiac performance of infarcted rat hearts. Molecular biology reports. 2012;39(2):1333-42. [DOI:10.1007/s11033-011-0867-2] [PMID]
42. Liu HS, Bai XW, Yang Y, Ge LH. [Multilineage potential of pulp stem cells from human young permanent teeth in vitro]. Beijing da xue xue bao Yi xue ban = Journal of Peking University Health sciences. 2007;39(1):41-5.
43. Yang E, Liu N, Tang Y, Hu Y, Zhang P, Pan C, et al. Generation of neurospheres from human adipose-derived stem cells. BioMed research international. 2015;2015:743714. [DOI:10.1155/2015/743714] [PMID] []
44. McLenachan S, Lum MG, Waters MJ, Turnley AM. Growth hormone promotes proliferation of adult neurosphere cultures. Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society. 2009;19(3):212-8. [DOI:10.1016/j.ghir.2008.09.003] [PMID]
45. Jensen JB, Parmar M. Strengths and limitations of the neurosphere culture system. Molecular neurobiology. 2006;34(3):153-61. [DOI:10.1385/MN:34:3:153] [PMID]
46. Galli R. The Neurosphere Assay (NSA) Applied to Neural Stem Cells (NSCs) and Cancer Stem Cells (CSCs). Methods in molecular biology (Clifton, NJ). 2019;1953:139-49. [DOI:10.1007/978-1-4939-9145-7_9] [PMID]
47. Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4):042001. [DOI:10.1088/1758-5090/ab331e] [PMID]
48. Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor protocols. 2018;2018(6). [DOI:10.1101/pdb.prot095505] [PMID]
49. Chan LL, Smith T, Kumph KA, Kuksin D, Kessel S, Déry O, et al. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry. Cytotechnology. 2016;68(5):2015-25. [DOI:10.1007/s10616-016-0015-x] [PMID] []
50. Hassanzadeh K, Nikzaban M, Moloudi MR, Izadpanah E. Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors. Iranian journal of basic medical sciences. 2015;18(6):549-54.
51. Abolfathi AA, Vahabzadeh Z, Mahmoodiaghdam N, Vahabzadeh D, Hakhamanesh MS. Effects of taurine and homocysteine on lipid profile and oxidative stress in fructose-fed rats. Scientific Journal of Kurdistan University of Medical Sciences. 2017;22(3):49-59.
52. Khosrobakhsh F, Moloudi MR, Bigdelo M, Rahimi A. Effect of cholestasis on dynamin-related protein 1 (Drp1) gene expression in rat liver. Scientific Journal of Kurdistan University of Medical Sciences. 2017;22(4).
53. Choe G, Kim SW, Park J, Park J, Kim S, Kim YS, et al. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials. 2019;225:119513. [DOI:10.1016/j.biomaterials.2019.119513] [PMID]
54. Kerschenmeyer A, Arlov Ø, Malheiro V, Steinwachs M, Rottmar M, Maniura-Weber K, et al. Anti-oxidant and immune-modulatory properties of sulfated alginate derivatives on human chondrocytes and macrophages. Biomaterials science. 2017;5(9):1756-65. [DOI:10.1039/C7BM00341B] [PMID]
55. Khosravizadeh Z, Razavi S, Bahramian H, Kazemi M. The beneficial effect of encapsulated human adipose-derived stem cells in alginate hydrogel on neural differentiation. Journal of biomedical materials research Part B, Applied biomaterials. 2014;102(4):749-55. [DOI:10.1002/jbm.b.33055] [PMID]
56. Ghorbani S, Tiraihi T, Soleimani M. Differentiation of mesenchymal stem cells into neuron-like cells using composite 3D scaffold combined with valproic acid induction. Journal of biomaterials applications. 2018;32(6):702-15. [DOI:10.1177/0885328217741903] [PMID]
57. Mahoney MJ, Anseth KS. Contrasting effects of collagen and bFGF-2 on neural cell function in degradable synthetic PEG hydrogels. Journal of biomedical materials research Part A. 2007;81(2):269-78. [DOI:10.1002/jbm.a.30970] [PMID]
58. Tatard VM, D'Ippolito G, Diabira S, Valeyev A, Hackman J, McCarthy M, et al. Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons. Bone. 2007;40(2):360-73. [DOI:10.1016/j.bone.2006.09.013] [PMID]
59. Xie X, Liu H, Wu J, Chen Y, Yu Z, De Isla N, et al. Rat BMSC infusion was unable to ameliorate inflammatory injuries in tissues of mice with LPS-induced endotoxemia. Bio-medical materials and engineering. 2017;28(s1):S129-S38. [DOI:10.3233/BME-171634] [PMID]
60. Ye Y, Peng YR, Hu SQ, Yan XL, Chen J, Xu T. In Vitro Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells by Cerebrospinal Fluid Improves Motor Function of Middle Cerebral Artery Occlusion Rats. Frontiers in neurology. 2016;7:183. [DOI:10.3389/fneur.2016.00183] [PMID] []
61. Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Progress in neurobiology. 2017. [DOI:10.1016/j.pneurobio.2017.03.003] [PMID] []
62. Onifer SM, Rabchevsky AG, Scheff SW. Rat models of traumatic spinal cord injury to assess motor recovery. ILAR journal. 2007;48(4):385-95. [DOI:10.1093/ilar.48.4.385] [PMID]
63. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. Journal of materials science Materials in medicine. 2016;27(4):77. [DOI:10.1007/s10856-016-5684-7] [PMID] []
64. Joosten EA. Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle. Cell and tissue research. 2012;349(1):375-95. [DOI:10.1007/s00441-012-1352-5] [PMID] []
65. Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, et al. Hydrogels in spinal cord injury repair strategies. ACS chemical neuroscience. 2011;2(7):336-45. [DOI:10.1021/cn200030w] [PMID] []
66. Matyash M, Despang F, Mandal R, Fiore D, Gelinsky M, Ikonomidou C. Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress. Tissue engineering Part A. 2012;18(1-2):55-66. [DOI:10.1089/ten.tea.2011.0097] [PMID]
67. Abd El-Rehim HA, El-Sawy NM, Hegazy el SA, Soliman el SA, Elbarbary AM. Improvement of antioxidant activity of chitosan by chemical treatment and ionizing radiation. Int J Biol Macromol. 2012;50(2):403-13. [DOI:10.1016/j.ijbiomac.2011.12.021] [PMID]
68. Kelishomi ZH, Goliaei B, Mahdavi H, Nikoofar A, Rahimi M, Moosavi-Movahedi AA, et al. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food chemistry. 2016;196:897-902. [DOI:10.1016/j.foodchem.2015.09.091] [PMID]
69. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state. Pharmacological reviews. 2002;54(2):271-84. [DOI:10.1124/pr.54.2.271] [PMID]
70. Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cellular and molecular neurobiology. 1998;18(6):667-82. https://doi.org/10.1023/A:1020685903186 [DOI:10.1023/A:1020221919154] [PMID]
72. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC cell biology. 2006;7:14. [DOI:10.1186/1471-2121-7-14] [PMID] []
73. Li XH, Fu YH, Lin QX, Liu ZY, Shan ZX, Deng CY, et al. Induced bone marrow mesenchymal stem cells improve cardiac performance of infarcted rat hearts. Molecular biology reports. 2012;39(2):1333-42. [DOI:10.1007/s11033-011-0867-2] [PMID]
74. Liu HS, Bai XW, Yang Y, Ge LH. [Multilineage potential of pulp stem cells from human young permanent teeth in vitro]. Beijing da xue xue bao Yi xue ban = Journal of Peking University Health sciences. 2007;39(1):41-5.
75. Yang E, Liu N, Tang Y, Hu Y, Zhang P, Pan C, et al. Generation of neurospheres from human adipose-derived stem cells. BioMed research international. 2015;2015:743714. [DOI:10.1155/2015/743714] [PMID] []
76. McLenachan S, Lum MG, Waters MJ, Turnley AM. Growth hormone promotes proliferation of adult neurosphere cultures. Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society. 2009;19(3):212-8. [DOI:10.1016/j.ghir.2008.09.003] [PMID]
77. Jensen JB, Parmar M. Strengths and limitations of the ne--------Noshad M, Hojjati M, Behbahani BA. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microb Pathog. 2018;116:153. [DOI:10.1016/j.micpath.2018.01.026] [PMID]
78. Jackson BE, Wilhelmus KR, Mitchell BM. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Microb Pathog. 2007;42(2-3):88. [DOI:10.1016/j.micpath.2006.11.005] [PMID] []
79. Africa CWJ, dos Santos Abrantes PM. Candida antifungal drug resistance in sub-Saharan African populations: A systematic review. F1000Research. 2016;5. [DOI:10.12688/f1000research.10327.1] [PMID] []
80. Haghdoost AA, Mostafavi E, Mirzazadeh A, Navadeh S, Feizzadeh A, Fahimfar N, et al. Modelling of HIV/AIDS in Iran up to 2014. JAHR. 2011;3(12):231. [DOI:10.5897/JAHR11.030]
81. Schwarcz L, Chen M-J, Vittinghoff E, Hsu L, Schwarcz S. Declining incidence of AIDS-defining opportunistic illnesses: results from 16 years of population-based AIDS surveillance. Aids. 2013;27(4):597. [DOI:10.1097/QAD.0b013e32835b0fa2] [PMID]
82. Terças AL, Marques SG, Moffa EB, Alves MB, de Azevedo CM, Siqueira WL, et al. Antifungal drug susceptibility of Candida species isolated from HIV-positive patients recruited at a public hospital in São Luís, Maranhão, Brazil. Front Microbiol. 2017;8:298. [DOI:10.3389/fmicb.2017.00298] [PMID] []
83. Patil S, Majumdar B, Sarode SC, Sarode GS, Awan KH. Oropharyngeal Candidosis in HIV Infected Patients-An Update. Front Microbiol. 2018;9:980. [DOI:10.3389/fmicb.2018.00980] [PMID] []
84. de Almeida Freires I, Murata RM, Furletti VF, Sartoratto A, de Alencar SM, Figueira GM, et al. Coriandrum sativum L(coriander) essential oil: antifungal activity and mode of action on Candida spp and molecular targets affected in human whole-genome expression. PLoS One. 2014;9(6):e99086. [DOI:10.1371/journal.pone.0099086] [PMID] []
85. Osaigbovo II, Lofor PV, Oladele RO. Fluconazole resistance among oral Candida isolates from people living with HIV/AIDS in a Nigerian tertiary hospital. J Fungi 2017;3(4):69. [DOI:10.3390/jof3040069] [PMID] []
86. Morschhäuser J. The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys. Acta Mol Ba. 2002;1587(2-3):240. [DOI:10.1016/S0925-4439(02)00087-X]
87. Dassanayake R, Ellepola A, Samaranayake Y, Samaranayak L. Molecular heterogeneity of fluconazole resistant and susceptible oral Candida albicans isolates within a single geographic locale. Apmis. 2002;110(4):315. [DOI:10.1034/j.1600-0463.2002.100406.x] [PMID]
88. Azhdarzadeh F, Hojjati M. Chemical composition and antimicrobial activity of leaf, ripe and unripe peel of bitter orange (Citrus aurantium) essential oils. Nutr Food Sci. 2016;3(1):43. [DOI:10.18869/acadpub.nfsr.3.1.43]
89. Eikani MH, Golmohammad F, Rowshanzamir S. Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L). J Food Eng . 2007;80(2):735. [DOI:10.1016/j.jfoodeng.2006.05.015]
90. Menezes RdP, Borges AS, Araujo LBd, Pedroso RDS, Röder Dvddb. Related factors for colonization by Candida species in the oral cavity of HIV-infected individuals. Rev Inst Med Trop Sao Paulo .2015;57(5):413. [DOI:10.1590/S0036-46652015000500008] [PMID] []
91. Heidarian A, Dehghan P, Chadeganipour M, Tayeri K. Frequency of Candida species isolated from the Oral Cavity of HIV-Infected Patients referring to Behavioral disease Counseling Center of Isfahan in 2017-2018. Sci J Kurd Univ Med Sci.2019;24(5):30. [DOI:10.29252/sjku.24.5.30]
92. Fothergill AW. Antifungal susceptibility testing: clinical laboratory and standards institute (CLSI) methods. Interactions of yeasts, moulds, and antifungal agents: Springer. 2012. p. 65. [DOI:10.1007/978-1-59745-134-5_2]
93. Patel PK, Erlandsen JE, Kirkpatrick WR, Berg DK, Westbrook SD, Louden C, et al. The changing epidemiology of oropharyngeal candidiasis in patients with HIV/AIDS in the era of antiretroviral therapy. AIDS Res Ther . 2012;2012. [DOI:10.1155/2012/262471] [PMID] []
94. Goulart LS, Souza Wwrd, Vieira CA, Lima JSd, Olinda RAd, Araújo Cd. Oral colonization by Candida species in HIV-positive patients: association and antifungal susceptibility study. Einstein (São Paulo). 2018;16(3). [DOI:10.1590/s1679-45082018ao4224] [PMID] []
95. Eyres G, Dufour JP, Hallifax G, Sotheeswaran S, Marriott PJ. Identification of character impact odorants in Coriander and wild Coriander leaves using gas chromatography olfactometry (GCO) and comprehensive two dimensional gas chromatography time of flight mass spectrometry (GC× GC-TOFMS). J Sep Sci. 2005;28(9-10):1061. [DOI:10.1002/jssc.200500012] [PMID]
96. Begnami A, Duarte M, Furletti V, Rehder V. Antimicrobial potential of Coriandrum sativum L against different Candida species in vitro. Food chemistry. 2010;118(1):74. [DOI:10.1016/j.foodchem.2009.04.089]
97. Silva F, Ferreira S, Duarte A, Mendonca DI, Domingues FC. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine. 2011;19(1):42. [DOI:10.1016/j.phymed.2011.06.033] [PMID]
98. Bersan SM, Galvão LC, Goes VF, Sartoratto A, Figueira GM, Rehder VL, et al. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement Altern Med . 2014;14(1):1-2. [DOI:10.1186/1472-6882-14-451] [PMID] []
99. Beikert F, Anastasiadou Z, Fritzen B, Frank U, Augustin M. Topical treatment of tinea pedis using 6% Coriander oil in unguentum leniens: a randomized, controlled, comparative pilot study. Dermatology. 2013;226(1):47. [DOI:10.1159/000346641] [PMID]
100. Yahyaabadi S, Zibanejad E, Doudi M. Effect of some of plant extracts on the growth of two Aspergillus species. J Herb Drug 2011;2(1):69.
101. Noshad M, Hojjati M, Behbahani BA. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microb Pathog. 2018;116:153. [DOI:10.1016/j.micpath.2018.01.026] [PMID]
102. Jackson BE, Wilhelmus KR, Mitchell BM. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Microb Pathog. 2007;42(2-3):88. [DOI:10.1016/j.micpath.2006.11.005] [PMID] []
103. Africa CWJ, dos Santos Abrantes PM. Candida antifungal drug resistance in sub-Saharan African populations: A systematic review. F1000Research. 2016;5. [DOI:10.12688/f1000research.10327.1] [PMID] []
104. Haghdoost AA, Mostafavi E, Mirzazadeh A, Navadeh S, Feizzadeh A, Fahimfar N, et al. Modelling of HIV/AIDS in Iran up to 2014. JAHR. 2011;3(12):231. [DOI:10.5897/JAHR11.030]
105. Schwarcz L, Chen M-J, Vittinghoff E, Hsu L, Schwarcz S. Declining incidence of AIDS-defining opportunistic illnesses: results from 16 years of population-based AIDS surveillance. Aids. 2013;27(4):597. [DOI:10.1097/QAD.0b013e32835b0fa2] [PMID]
106. Terças AL, Marques SG, Moffa EB, Alves MB, de Azevedo CM, Siqueira WL, et al. Antifungal drug susceptibility of Candida species isolated from HIV-positive patients recruited at a public hospital in São Luís, Maranhão, Brazil. Front Microbiol. 2017;8:298. [DOI:10.3389/fmicb.2017.00298] [PMID] []
107. Patil S, Majumdar B, Sarode SC, Sarode GS, Awan KH. Oropharyngeal Candidosis in HIV Infected Patients-An Update. Front Microbiol. 2018;9:980. [DOI:10.3389/fmicb.2018.00980] [PMID] []
108. de Almeida Freires I, Murata RM, Furletti VF, Sartoratto A, de Alencar SM, Figueira GM, et al. Coriandrum sativum L(coriander) essential oil: antifungal activity and mode of action on Candida spp and molecular targets affected in human whole-genome expression. PLoS One. 2014;9(6):e99086. [DOI:10.1371/journal.pone.0099086] [PMID] []
109. Osaigbovo II, Lofor PV, Oladele RO. Fluconazole resistance among oral Candida isolates from people living with HIV/AIDS in a Nigerian tertiary hospital. J Fungi 2017;3(4):69. [DOI:10.3390/jof3040069] [PMID] []
110. Morschhäuser J. The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys. Acta Mol Ba. 2002;1587(2-3):240. [DOI:10.1016/S0925-4439(02)00087-X]
111. Dassanayake R, Ellepola A, Samaranayake Y, Samaranayak L. Molecular heterogeneity of fluconazole resistant and susceptible oral Candida albicans isolates within a single geographic locale. Apmis. 2002;110(4):315. [DOI:10.1034/j.1600-0463.2002.100406.x] [PMID]
112. Azhdarzadeh F, Hojjati M. Chemical composition and antimicrobial activity of leaf, ripe and unripe peel of bitter orange (Citrus aurantium) essential oils. Nutr Food Sci. 2016;3(1):43. [DOI:10.18869/acadpub.nfsr.3.1.43]
113. Eikani MH, Golmohammad F, Rowshanzamir S. Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L). J Food Eng . 2007;80(2):735. [DOI:10.1016/j.jfoodeng.2006.05.015]
114. Menezes RdP, Borges AS, Araujo LBd, Pedroso RDS, Röder Dvddb. Related factors for colonization by Candida species in the oral cavity of HIV-infected individuals. Rev Inst Med Trop Sao Paulo .2015;57(5):413. [DOI:10.1590/S0036-46652015000500008] [PMID] []
115. Heidarian A, Dehghan P, Chadeganipour M, Tayeri K. Frequency of Candida species isolated from the Oral Cavity of HIV-Infected Patients referring to Behavioral disease Counseling Center of Isfahan in 2017-2018. Sci J Kurd Univ Med Sci.2019;24(5):30. [DOI:10.29252/sjku.24.5.30]
116. Fothergill AW. Antifungal susceptibility testing: clinical laboratory and standards institute (CLSI) methods. Interactions of yeasts, moulds, and antifungal agents: Springer. 2012. p. 65. [DOI:10.1007/978-1-59745-134-5_2]
117. Patel PK, Erlandsen JE, Kirkpatrick WR, Berg DK, Westbrook SD, Louden C, et al. The changing epidemiology of oropharyngeal candidiasis in patients with HIV/AIDS in the era of antiretroviral therapy. AIDS Res Ther . 2012;2012. [DOI:10.1155/2012/262471] [PMID] []
118. Goulart LS, Souza Wwrd, Vieira CA, Lima JSd, Olinda RAd, Araújo Cd. Oral colonization by Candida species in HIV-positive patients: association and antifungal susceptibility study. Einstein (São Paulo). 2018;16(3). [DOI:10.1590/s1679-45082018ao4224] [PMID] []
119. Eyres G, Dufour JP, Hallifax G, Sotheeswaran S, Marriott PJ. Identification of character impact odorants in Coriander and wild Coriander leaves using gas chromatography olfactometry (GCO) and comprehensive two dimensional gas chromatography time of flight mass spectrometry (GC× GC-TOFMS). J Sep Sci. 2005;28(9-10):1061. [DOI:10.1002/jssc.200500012] [PMID]
120. Begnami A, Duarte M, Furletti V, Rehder V. Antimicrobial potential of Coriandrum sativum L against different Candida species in vitro. Food chemistry. 2010;118(1):74. [DOI:10.1016/j.foodchem.2009.04.089]
121. Silva F, Ferreira S, Duarte A, Mendonca DI, Domingues FC. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine. 2011;19(1):42. [DOI:10.1016/j.phymed.2011.06.033] [PMID]
122. Bersan SM, Galvão LC, Goes VF, Sartoratto A, Figueira GM, Rehder VL, et al. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement Altern Med . 2014;14(1):1-2. [DOI:10.1186/1472-6882-14-451] [PMID] []
123. Beikert F, Anastasiadou Z, Fritzen B, Frank U, Augustin M. Topical treatment of tinea pedis using 6% Coriander oil in unguentum leniens: a randomized, controlled, comparative pilot study. Dermatology. 2013;226(1):47. [DOI:10.1159/000346641] [PMID]
124. Yahyaabadi S, Zibanejad E, Doudi M. Effect of some of plant extracts on the growth of two Aspergillus species. J Herb Drug 2011;2(1):69.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdi V, Dehghan P, Zolfaghari B, Maheronnaghsh M, Heidarian A. Evaluation of the Antifungal Effect of Fluconazole Separately and with Coriander Essential Oil on Candida Species Isolated from the Mouth of HIV-Positive Individuals. SJKU 2023; 28 (1) :20-29
URL: http://sjku.muk.ac.ir/article-1-6681-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 1 (Scientific Journal of Kurdistan University of Medical Sciences 2023) Back to browse issues page
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4660