1. Piero M, Nzaro G, Njagi J. Diabetes mellitus-a devastating metabolic disorder. Asian j. biomed. pharm. sci. 2015;5(40):1. 2. Chen R, Hornemann T, Štefanić S, Schraner EM, Zuellig R, Reding T, et al. Serine administration as a novel prophylactic approach to reduce the severity of acute pancreatitis during diabetes in mice. Diabetologia. 2020;63(9):1885-99. 3. Noel RA, Braun DK, Patterson RE, Bloomgren GL. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes care. 2009;32(5):834-8. 4. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2):3-8. 5. Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int. J. Mol. Sci. 2021;22(4):1509. 6. Lenzen S. Oxidative stress: the vulnerable β-cell. Biochem. Soc. Trans. 2008;36(3):343-7. 7. Fu Z, R Gilbert E, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 2013;9(1):25-53. 9. Zuellig RA, Hornemann T, Othman A, Hehl AB, Bode H, Güntert T, et al. Deoxysphingolipids, novel biomarkers for type 2 diabetes, are cytotoxic for insulin-producing cells. Diabetes. 2014;63(4):1326-39. 10. De Koning TJ, Snell K, Duran M, Berger R, Poll-The B-T, Surtees R. L-serine in disease and development. Biochem. J. 2003;371(3):653-61. 11. Holm LJ, Buschard K. L‐serine: a neglected amino acid with a potential therapeutic role in diabetes. Apmis. 2019;127(10):655-9. 12. Zhou X, He L, Wu C, Zhang Y, Wu X, Yin Y. Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. Mol. Nutr. Food Res. 2017;61(11):1700262. 13. Calabrese V, Cornelius C, Leso V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim. Biophys. Acta - Mol. Basis Dis. 2012;1822(5):729-36. 14. Jensen-Waern M, Andersson M, Kruse R, Nilsson B, Larsson R, Korsgren O, et al. Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism. Lab. Anim. 2009;43(3):249-54. 15. Bervoets L, Massa G, Guedens W, Louis E, Noben J-P, Adriaensens P. Metabolic profiling of type 1 diabetes mellitus in children and adolescents: a case-control study. Diabetol Metab Syndr. 2017;9(1):1-8. 16. Drábková P, Šanderová J, Kovařík J, KanĎár R. An assay of selected serum amino acids in patients with type 2 diabetes mellitus. Adv. Clin. Exp. Med. 2015;24(3):447-51. 17. Maralani MN, Movahedian A, Javanmard SH. Antioxidant and cytoprotective effects of L-Serine on human endothelial cells. Res Pharm Sci. 2012;7(4):209. 18. Zhou X, Zhang H, He L, Wu X, Yin Y. Long-term l-serine administration reduces food intake and improves oxidative stress and Sirt1/NFκB signaling in the hypothalamus of aging mice. Front. Endocrinol. 2018;9:476. 19. Kim KY, Hwang S-K, Park SY, Kim MJ, Kim YH. l-Serine protects mouse hippocampal neuronal HT22 cells against oxidative stress-mediated mitochondrial damage and apoptotic cell death. Free Radic. Biol. Med. 2019;141:447-60. 20. Holm LJ, Haupt-Jorgensen M, Larsen J, Giacobini JD, Bilgin M, Buschard K. L-serine supplementation lowers diabetes incidence and improves blood glucose homeostasis in NOD mice. PLoS One. 2018;13(3):e0194414. 21. Kenneth K. Wu YH. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc; 2008. p. Unit 5.47. 22. Langroudi FE, Narani MS, Kheirollahi A, Vatannejad A, Shokrpoor S, Alizadeh S. Effect of l-serine on oxidative stress markers in the kidney of streptozotocin-induced diabetic mice. Amino Acids. 2023:1-8. 23. Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin. Sci. 1998;94(6):623-32. 24. Martins IJ. Diabetes and Clinical Studies. 2035. 25. Holeček M. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients. 2022;14(9):1987. 26. Holeček M, Vodeničarovová M, Fingrová R. Dual effects of beta-hydroxy-beta-methylbutyrate (HMB) on amino acid, energy, and protein metabolism in the liver and muscles of rats with streptozotocin-induced type 1 diabetes. Biomolecules. 2020;10(11):1475. 27. Scharff R, Wool IG. Effect of diabetes on the concentration of amino acids in plasma and heart muscle of rats. Biochem. J. 1966;99(1):173. 28. Campos K, Diniz Y, Cataneo A, Faine L, Alves M, Novelli E. Hypoglycaemic and antioxidant effects of onion, Allium cepa: dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. Int J Food Sci Nutr. 2003;54(3):241-6. 29. Akcılar R, Turgut S, Caner V, Akcılar A, Ayada C, Elmas L, et al. The effects of apelin treatment on a rat model of type 2 diabetes. Adv. Med. Sci. 2015;60(1):94-100. 30. Ghanbari E, Nejati V, Khazaei M. Improvement in serum biochemical alterations and oxidative stress of liver and pancreas following use of royal jelly in streptozotocin-induced diabetic rats. Cell J. 2016;18(3):362. 31. Naseri M, Sereshki ZK, Ghavami B, Zangii BM, Kamalinejad M, Moghaddam PM, et al. Preliminary results of effect of barley (Hordeum vulgare L.) extract on liver, pancreas, kidneys and cardiac tissues in streptozotocin induced diabetic rats. Eur. J. Transl. Myol. 2022;32(1). 32. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 1996;20(3):463-6. 33. Ramachandran B, Ravi K, Narayanan V, Kandaswamy M, Subramanian S. Protective effect of macrocyclic binuclear oxovanadium complex on oxidative stress in pancreas of streptozotocin induced diabetic rats. Chem. Biol. Interact. 2004;149(1):9-21. 34. Zhou X, Zhang Y, He L, Wan D, Liu G, Wu X, et al. Serine prevents LPS-induced intestinal inflammation and barrier damage via p53-dependent glutathione synthesis and AMPK activation. J. Funct. Foods. 2017;39:225-32. 35. Mwinyi J, Boström A, Fehrer I, Othman A, Waeber G, Marti-Soler H, et al. Plasma 1-deoxysphingolipids are early predictors of incident type 2 diabetes mellitus. PloS one. 2017;12(5):e0175776. 36. Othman A, Saely CH, Muendlein A, Vonbank A, Drexel H, von Eckardstein A, et al. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2015;3(1):e000073. 37. Wei N, Pan J, Pop-Busui R, Othman A, Alecu I, Hornemann T, et al. Altered sphingoid base profiles in type 1 compared to type 2 diabetes. Lipids Health Dis. 2014;13(1):1-4. 38. Cao G, Tao F, Xin L, Li Z, Zhou X. Effects of maternal serine supplementation on high-fat diet-induced oxidative stress and epigenetic changes in promoters of glutathione synthesis-related genes in offspring. J. Funct. Foods. 2018;47:316-24. 39. Bertea M, Rütti MF, Othman A, Marti-Jaun J, Hersberger M, von Eckardstein A, et al. Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis. 2010;9(1):1-7. 40. Vangipurapu J, Stancáková A, Smith U, Kuusisto J, Laakso M. Nine amino acids are associated with decreased insulin secretion and elevated glucose levels in a 7.4-year follow-up study of 5,181 Finnish men. Diabetes. 2019;68(6):1353-8.
|