1. 1.Parkin DM. Global cancer statistics in the year 2000. The lancet oncology. 2001;2(9):533-43. [ DOI:10.1016/S1470-2045(01)00486-7] [ PMID] 2. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA: a cancer journal for clinicians. 2019;69(5):363-85. [ DOI:10.3322/caac.21565] [ PMID] 3. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, et al. Breast cancer statistics, 2019. CA: a cancer journal for clinicians. 2019;69(6):438-51. [ DOI:10.3322/caac.21583] [ PMID] 4. Simpson PT, Reis‐Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2005;205(2):248-54. [ DOI:10.1002/path.1691] [ PMID] 5. Kittaneh M, Montero AJ, Glück S. Molecular profiling for breast cancer: a comprehensive review. Biomarkers in cancer. 2013;5:BIC. S9455. [ DOI:10.4137/BIC.S9455] [ PMID] [ ] 6. Park HS, Jang MH, Kim EJ, Kim HJ, Lee HJ, Kim YJ, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Modern pathology. 2014;27(9):1212-22. [ DOI:10.1038/modpathol.2013.251] [ PMID] 7. Park K, Han S, Shin E, Kim H, Kim J. EGFR gene and protein expression in breast cancers. European Journal of Surgical Oncology (EJSO). 2007;33(8):956-60. [ DOI:10.1016/j.ejso.2007.01.033] [ PMID] 8. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer discovery. 2013;3(2):224-37. [ DOI:10.1158/2159-8290.CD-12-0349] [ PMID] [ ] 9. Seol H, Lee HJ, Choi Y, Lee HE, Kim YJ, Kim JH, et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Modern pathology. 2012;25(7):938-48. [ DOI:10.1038/modpathol.2012.36] [ PMID] 10. Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proceedings of the National Academy of Sciences. 2004;101(25):9393-8. [ DOI:10.1073/pnas.0402993101] [ PMID] [ ] 11. Sledge GW, Mamounas EP, Hortobagyi GN, Burstein HJ, Goodwin PJ, Wolff AC. Past, present, and future challenges in breast cancer treatment. Journal of clinical oncology. 2014;32(19):1979. [ DOI:10.1200/JCO.2014.55.4139] [ PMID] [ ] 12. Baselga J, Bradbury I, Eidtmann H, Di Cosimo S, De Azambuja E, Aura C, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. The Lancet. 2012;379(9816):633-40. [ DOI:10.1016/S0140-6736(11)61847-3] [ PMID] 13. Bundred N, Porta N, Brunt AM, Cramer A, Hanby A, Shaaban AM, et al. Combined Perioperative Lapatinib and Trastuzumab in Early HER2-Positive Breast Cancer Identifies Early Responders: Randomized UK EPHOS-B Trial Long-Term Results. Clinical Cancer Research. 2022;28(7):1323-34. [ DOI:10.1158/1078-0432.CCR-21-3177] [ PMID] [ ] 14. Liu C, Cheng X, Xing J, Li J, Li Z, Jian D, et al. CIRBP-OGFR axis safeguards against cardiomyocyte apoptosis and cardiotoxicity induced by chemotherapy. International journal of biological sciences. 2022;18(7):2882. [ DOI:10.7150/ijbs.69655] [ PMID] [ ] 15. Lewińska A, Wróbel K, Błoniarz D, Adamczyk-Grochala J, Wołowiec S, Wnuk M. Lapatinib-and fulvestrant-PAMAM dendrimer conjugates promote apoptosis in chemotherapy-induced senescent breast cancer cells with different receptor status. Biomaterials Advances. 2022;140:213047. [ DOI:10.1016/j.bioadv.2022.213047] [ PMID] 16. Moradipoodeh B, Jamalan M, Zeinali M, Fereidoonnezhad M, Mohammadzadeh G. In vitro and in silico anticancer activity of amygdalin on the SK-BR-3 human breast cancer cell line. Molecular Biology Reports. 2019;46(6):6361-70. [ DOI:10.1007/s11033-019-05080-3] [ PMID] 17. Moradipoodeh B, Jamalan M, Zeinali M, Fereidoonnezhad M, Mohammadzadeh G. Specific targeting of HER2-positive human breast carcinoma SK-BR-3 cells by amygdaline-ZHER2 affibody conjugate. Molecular Biology Reports. 2020;47(9):7139-51. [ DOI:10.1007/s11033-020-05782-z] [ PMID] 18. Chen Y-J, Yeh M-H, Yu M-C, Wei Y-L, Chen W-S, Chen J-Y, et al. Lapatinib-induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors. Breast cancer research. 2013;15(6):1-14. [ DOI:10.1186/bcr3575] [ PMID] [ ] 19. Berretta M, Della Pepa C, Tralongo P, Fulvi A, Martellotta F, Lleshi A, et al. Use of Complementary and Alternative Medicine (CAM) in cancer patients: An Italian multicenter survey. Oncotarget. 2017;8(15):24401. [ DOI:10.18632/oncotarget.14224] [ PMID] [ ] 20. Liczbiński P, Bukowska B. Molecular mechanism of amygdalin action in vitro: review of the latest research. Immunopharmacology and immunotoxicology. 2018;40(3):212-8. [ DOI:10.1080/08923973.2018.1441301] [ PMID] 21. Shi J, Chen Q, Xu M, Xia Q, Zheng T, Teng J, et al. Recent updates and future perspectives about amygdalin as a potential anticancer agent: a review. Cancer Medicine. 2019;8(6):3004-11. [ DOI:10.1002/cam4.2197] [ PMID] [ ] 22. Albogami S, Alnefaie A. Role of Amygdalin in Blocking DNA Replication in Breast Cancer In Vitro. Current Pharmaceutical Biotechnology. 2021;22(12):1612-27. [ DOI:10.2174/1389201022666210203123803] [ PMID] 23. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. Journal of clinical oncology. 2002;20(5):1215-21. [ DOI:10.1200/JCO.2002.20.5.1215] [ PMID] 24. Rexer BN, Arteaga CL. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. Critical Reviews™ in Oncogenesis. 2012;17.(1) [ DOI:10.1615/CritRevOncog.v17.i1.20] [ PMID] [ ] 25. Carpenter RL, Lo H-W. Regulation of apoptosis by HER2 in breast cancer. Journal of carcinogenesis & mutagenesis. 2013;2013(Suppl 7). 26. Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Torres-Garcia VZ, Sauri-Nadal T, Del Barco S, et al. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies. Biochemical and biophysical research communications. 2011;407(2):412-9. [ DOI:10.1016/j.bbrc.2011.03.039] [ PMID] 27. Reisfeld RA. The tumor microenvironment: a target for combination therapy of breast cancer. Critical Reviews™ in Oncogenesis. 2013;1(2-1). [ DOI:10.1615/CritRevOncog.v18.i1-2.70] [ PMID] 28. Núñez C, Capelo JL, Igrejas G, Alfonso A, Botana LM, Lodeiro C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials. 2016;97:34-50. [ DOI:10.1016/j.biomaterials.2016.04.027] [ PMID] 29. Huang H-L, Chen Y-C, Huang Y-C, Yang K-C, Pan HY, Shih S-P, et al. Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells. PloS one. 2011;6(12):e29014. [ DOI:10.1371/journal.pone.0029014] [ PMID] [ ] 30. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. 2009;69(17):6871-8. [ DOI:10.1158/0008-5472.CAN-08-4490] [ PMID] 31. Putcha GV, Harris CA, Moulder KL, Easton RM, Thompson CB, Johnson Jr EM. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. The Journal of cell biology. 2002;157(3):441-53. [ DOI:10.1083/jcb.200110108] [ PMID] [ ] 32. Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798-811. [ DOI:10.1038/sj.onc.1209608] [ PMID] 33. Park H-J, Yoon S-H, Han L-S, Zheng L-T, Jung K-H, Uhm Y-K, et al. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World journal of gastroenterology: WJG. 2005;11(33):5156. 34. Nahta R, Yuan LX, Du Y, Esteva FJ. Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: effects on insulin-like growth factor I signaling. Molecular cancer therapeutics. 2007;6(2):667-74. [ DOI:10.1158/1535-7163.MCT-06-0423] [ PMID] 35. Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, et al. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. 2008;100(15):1092-103. [ DOI:10.1093/jnci/djn216] [ PMID] [ ] 36. Guan M, Tong Y, Guan M, Liu X, Wang M, Niu R, et al. Lapatinib inhibits breast cancer cell proliferation by influencing PKM2 expression. 2018;17:1533034617749418. [ DOI:10.1177/1533034617749418] [ PMID] [ ]
|