1. Nafziger AN, Barkin RL. Opioid Therapy in Acute and Chronic Pain. J Clin Pharmacol. 2018;58(9):1111-22. [ DOI:10.1002/jcph.1276] [ PMID] 2. Pouletty P. Drug addictions: towards socially accepted and medically treatable diseases. Nat Rev Drug Discov. 2002; 1(9):731-6. [ DOI:10.1038/nrd896] [ PMID] 3. Rothwell PE, Thomas MJ, Gewirtz JC. Distinct profiles of anxiety and dysphoria during spontaneous withdrawal from acute morphine exposure. Neuropsychopharmacology. 2009; 34(10):2285-95. [ DOI:10.1038/npp.2009.56] [ PMID] [ ] 4. Zhang G, Wu X, Zhang YM, Liu H, Jiang Q, Pang G, et al. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice. Neuropharmacology. 2016; 101:246-54. [ DOI:10.1016/j.neuropharm.2015.09.031] [ PMID] [ ] 5. Bell J. Pharmacological maintenance treatments of opiate addiction. Br J Clin Pharmacol. 2014;77(2):253-63. [ DOI:10.1111/bcp.12051] [ PMID] [ ] 6. Dunn KE, Huhn AS, Bergeria CL, Gipson CD, Weerts EM. Non-Opioid Neurotransmitter Systems that Contribute to the Opioid Withdrawal Syndrome: A Review of Preclinical and Human Evidence. J Pharmacol Exp Ther. 2019;371(2):422-52. [ DOI:10.1124/jpet.119.258004] [ PMID] [ ] 7. Allahtavakoli M, Moloudi R, Rezvani ME, Shamsizadeh A. Effect of Morphine Withdrawal Syndrome on Cerebral Ischemia Outcome in Rats. IJBMS. 2011; 1(48):1-8. 8. Bao G, Kang L, Li H, Li Y, Pu L, Xia P, et al. Morphine and heroin differentially modulate in vivo hippocampal LTP in opiate-dependent rat. Neuropsychopharmacology. 2007;32(8):1738-49 [ DOI:10.1038/sj.npp.1301308] [ PMID] 9. De Vries TJ, Shippenberg TS. Neural systems underlying opiate addiction. J Neurosci. 2002;22(9):3321-5. [ DOI:10.1523/JNEUROSCI.22-09-03321.2002] [ PMID] [ ] 10. Harris GC, Aston-Jones G. Augmented accumbal serotonin levels decrease the preference for a morphine associated environment during withdrawal. Neuropsychopharmacology. 2001;24(1):75-85. [ DOI:10.1016/S0893-133X(00)00184-6] [ PMID] 11. Müller CP, Homberg JR. The role of serotonin in drug use and addiction. Behav Brain Res . 2015 15;277:146-92. [ DOI:10.1016/j.bbr.2014.04.007] [ PMID] 12. Filip M, Bader M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacolo Rep. 2009;61(5):761-77. [ DOI:10.1016/S1734-1140(09)70132-X] [ PMID] 13. Fletcher PJ, Rizos Z, Noble K, Soko AD, Silenieks LB, Le AD, et al. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement. Neuropharmacology. 2012;62(7):2288-98. [ DOI:10.1016/j.neuropharm.2012.01.023] [ PMID] 14. Zaniewska M, McCreary AC, Wydra K, Filip M. Differential effects of serotonin (5-HT)2 receptor-targeting ligands on locomotor responses to nicotine-repeated treatment. Synapse 2010;64(7):511-9. [ DOI:10.1002/syn.20756] [ PMID] 15. Zhang G, Stackman Jr R. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015;6:225:1-17. [ DOI:10.3389/fphar.2015.00225] 16. Kimmey BA, Ostroumov A, Dani JA. 5-HT2A receptor activation normalizes stress-induced dysregulation of GABAergic signaling in the ventral tegmental area. Proc Natl Acad Sci U S A. 2019;116(52):27028-34. [ DOI:10.1073/pnas.1911446116] [ PMID] [ ] 17. Afshar S, Shahidi S, Rohani AH, Komaki A, Asl SS. The effect of NAD-299 and TCB-2 on learning and memory, hippocampal BDNF levels and amyloid plaques in Streptozotocin-induced memory deficits in male rats. Psychopharmacology. 2018;235(10):2809-22. [ DOI:10.1007/s00213-018-4973-x] [ PMID] 18. Shahidi S, Hashemi-Firouzi N, Afshar S, Asl SS, Komaki A. Protective Effects of 5-HT1A Receptor Inhibition and 5-HT2A Receptor Stimulation Against Streptozotocin-Induced Apoptosis in the Hippocampus. Malays J Med Sci. 2019;26(2):40-51. [ DOI:10.21315/mjms2019.26.2.5] [ PMID] [ ] 19. Sánchez-Brualla I, Boulenguez P, Brocard C, Liabeuf S, Viallat-Lieutaud A, Navarro X, et al. Activation of 5-HT2A receptors restores KCC2 function and reduces neuropathic pain after spinal cord injury. Neuroscience. 2018;387:48-57. [ DOI:10.1016/j.neuroscience.2017.08.033] [ PMID] 20. Marek GJ. Behavioral evidence for mu-opioid and 5-HT2A receptor interactions. Eur J Pharmacol. 2003;474(1):77-83. [ DOI:10.1016/S0014-2999(03)01971-X] [ PMID] 21. Pang G, Wu X, Tao X, Mao R, Liu X, Zhang YM, et al. Blockade of Serotonin 5-HT(2A) Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice. Front Pharmacol. 2016;7:514:1-10. [ DOI:10.3389/fphar.2016.00514] 22. Li JX, Shah AP, Patel SK, Rice KC, France CP. Modification of the behavioral effects of morphine in rats by serotonin 5-HT₁A and 5-HT₂A receptor agonists: antinociception, drug discrimination, and locomotor activity. Psychopharmacology. 2013;225(4):791-801. [ DOI:10.1007/s00213-012-2870-2] [ PMID] [ ] 23. Charkhpour M, Nayebi ARM, Doustar Y, Hassanzadeh K. 8-OH-DPAT prevents morphine-induced apoptosis in rat dorsal raphe nucleus: a possible mechanism for attenuating morphine tolerance. Anesth Analg . 2010;111(5):1316-21. [ DOI:10.1213/ANE.0b013e3181f1bb9a] [ PMID] 24. Shahidi S, Hashemi-Firouzi N. The effects of a 5-HT7 receptor agonist and antagonist on morphine withdrawal syndrome in mice. Neurosci Lett. 2014;578:27-32. [ DOI:10.1016/j.neulet.2014.06.027] [ PMID] 25. Gao J, Chen L, Li M. 5-HT(2A) receptors modulate dopamine D(2)-mediated maternal effects. Pharmacol Biochem Behav. 2019;180:32-43. [ DOI:10.1016/j.pbb.2019.03.003] [ PMID] [ ] 26. Ghasemi F, Moradi A, Izadpanah E, Moloudi MR, Hassanzadeh K, Rahimmi A, et al. Simvastatin prevents morphine antinociceptive tolerance and withdrawal symptoms in rats. J Formos Med Assoc. 2015;114(5):399-406. [ DOI:10.1016/j.jfma.2014.07.011] [ PMID] 27. Bardin L, Kim JA, Siegel S. The role of formalin-induced pain in morphine tolerance, withdrawal, and reward. Exp Clin Psychopharmacol. 2000;8(1):61-7. [ DOI:10.1037/1064-1297.8.1.61] [ PMID] 28. Abbott FV, Hong Y, Blier P. Activation of 5-HT2A receptors potentiates pain produced by inflammatory mediators. Neuropharmacology. 1996;35(1):99-110. [ DOI:10.1016/0028-3908(95)00136-0] [ PMID] 29. Charkhpour M, Mohajel Naebi A. Evaluation of the role of 5-HT1A receptors in Dorsal and Median raphe nuclei on the morphine withdrawal syndrome in rat. Pharmaceutical Sciences. 2005 (3) 73-80. [ DOI:10.1016/S0924-977X(06)70698-8] 30. Wu X, Pang G, Zhang YM, Li G, Xu S, Dong L, et al. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Neurosci Lett. 2015;607:23-8. [ DOI:10.1016/j.neulet.2015.09.013] [ PMID] [ ] 31. Koob GF, Maldonado R, Stinus L. Neural substrates of opiate withdrawal. Trends Neurosci. 1992;15(5):186-91. [ DOI:10.1016/0166-2236(92)90171-4] [ PMID] 32. Taylor JR, Elsworth JD, Garcia EJ, Grant SJ, Roth RH, Redmond DE. Clonidine infusions into the locus coeruleus attenuate behavioral and neurochemical changes associated with naloxone- precipitated withdrawal. Psychopharmacology. 1988;96(1):121-34. [ DOI:10.1007/BF02431544] [ PMID] 33. Dave KD, Harvey JA, Aloyo VJ. A novel behavioral model that discriminates between 5-HT2A and 5-HT2C receptor activation. Pharmacol Biochem Behav . 2002;72(1-2):371-8. [ DOI:10.1016/S0091-3057(01)00767-5] [ PMID]
|