[صفحه اصلی ]   [Archive] [ English ]  
:: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اول سایت مجله::
صفحه اول سایت دانشگاه::
اطلاعات مجله::
اعضای دفتر مجله::
نمایه‌های مجله::
آرشیو مقالات::
راهنمای نویسندگان::
راهنمای داوران::
ثبت نام و ارسال مقاله::
امکانات سایت مجله::
واحد علم سنجی دانشگاه::
مقالات مرتبط::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
نظرسنجی
نظر شما در مورد مقالات مجله علمی دانشگاه علوم پزشکی کردستان چیست؟
ضعیف
متوسط
خوب
عالی
   
..
شاخص های استنادی مجله

Citation Indices from GS

AllSince 2020
Citations101515562
h-index3926
i10-index261138

 
..
کتابخانه مرکزی دانشگاه علوم پزشکی کردستان
AWT IMAGE
..
معاونت تحقیقات و فن آوری
AWT IMAGE
..
SCImago Journal & Country Rank
:: دوره 28، شماره 2 - ( مجله علمی دانشگاه علوم پزشکی کردستان 1402 ) ::
جلد 28 شماره 2 صفحات 39-28 برگشت به فهرست نسخه ها
اثر آلفاپاینن بر بهبود حافظه کاری و فضایی در موش های صحرایی
پریا هاشمی1 ، هلیا رحمانی2 ، محمد رامان مولودی3 ، ذکریا وهاب زاده4 ، اسماعیل ایزدپناه5
1- دکترای فیزیولوژی، مرکز تحقیقات علوم سلولی و مولکولی، پژوهشکده توسعه سلامت، دانشگاه علوم پزشکی کردستان، سنندج، ایران. ، pr.hashemi@yahoo.com
2- دانشجوی کارشناسی ارشد، کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی کردستان، سنندج، ایران
3- دانشیار فیزیولوژی، مرکز تحقیقات علوم اعصاب، پژوهشکده توسعه سلامت، دانشگاه علوم پزشکی کردستان، سنندج، ایران
4- دانشیار بیوشیمی بالینی، مرکز تحقیقات گوارش و کبد، پژوهشکده توسعه سلامت، دانشگاه علوم پزشکی کردستان، سنندج، ایران
5- دانشیار فیزیولوژی، مرکز تحقیقات علوم سلولی و مولکولی، پژوهشکده توسعه سلامت، دانشگاه علوم پزشکی کردستان، سنندج، ایران
چکیده:   (2020 مشاهده)
زمینه و هدف: استرس اکسیداتیو از عوامل مهم در بروز اختلال در حافظه و یادگیری است که سبب آسیب نورونی در ناحیه هیپوکامپ می­گردد. آلفا پاینن ترکیبی پلی فنولیک از خانواده ترپن­ ها است که اثرات ضدالتهابی، ضد اضطرابی، آنتی‌اکسیدانی و حفاظت عصبی مهمی را در سیستم عصبی مرکزی نشان داده است که می‌تواند بر حافظه مؤثر باشد. هدف از پژوهش حاضر، بررسی اثر آلفاپاینن بر بهبود حافظه کاری و فضایی در موش‌های صحرایی بود.
مواد و روش ­ها: در این مطالعه 24 سر موش صحرایی نر به صورت تصادفی به 3 گروه کنترل، آلفاپاینن دوز mg/kg 5 و10 (به مدت 3 هفته، تزریق داخل صفاقی) تقسیم شدند. حافظه فضایی و کاری به ترتیب، از طریق ماز آبی موریس و ماز Y ارزیابی شدند. سپس، میزان مالون دی آلدئید و ظرفیت آنتی‌اکسیدانی تام در بافت هیپوکامپ اندازه‌گیری گردید. یافته­ ها با استفاده از آزمون آماری تحلیل واریانس یک‌طرفه و تست تعقیبی توکی آنالیز شدند.
یافته ­ها: درصد تناوب در ماز Y در گروه آلفاپاینن mg/kg 10 نسبت به گروه‌های کنترل و دریافت‌کننده آلفاپاینن با دوز mg/kg 5 افزایش یافت. همچنین مدت زمان سپری شده در ناحیه هدف در دوز mg/kg 10 آلفاپاینن نسبت به گروه کنترل افزایش معنی داری را نشان داد، اما تفاوت معنی داری میان گروه‌ها از نظر مدت زمان رسیدن به سکوی هدف وجود نداشت. همچنین آلفاپاینن mg/kg 10 میزان مالون دی آلدئید بافت هیپوکامپ را نسبت به گروه کنترل کاهش داد، اما تفاوت معنی‌داری میان گروه­ ها از نظر میزان ظرفیت آنتی اکسیدانی تام مشاهده نشد.
نتیجه‌گیری: آلفاپاینن سبب افزایش در عملکرد حافظه فضایی و کاری در موش‌های صحرایی گردید. یکی از مکانیسم­ های احتمالی بهبود حافظه در مطالعه حاضر، می‌تواند ناشی از کاهش میزان مالون دی آلدئید بافت هیپوکامپ، به عنوان یکی از شاخص ­های مهم استرس اکسیداتیو سیستم اعصاب مرکزی باشد.

 
واژه‌های کلیدی: استرس اکسیداتیو، آلفاپاینن، حافظه کاری، حافظه فضایی، مالون دی آلدئید، ظرفیت آنتی اکسیدانی تام
متن کامل [PDF 844 kb]   (639 دریافت)    
نوع مطالعه: پژوهشي اصیل | موضوع مقاله: فیزیولوژی و علوم اعصاب
دریافت: 1401/1/30 | پذیرش: 1401/4/28 | انتشار: 1402/3/7
فهرست منابع
1. Bartsch T, Arzy S. Human memory: insights into hippocampal networks in epilepsy. Brain. 2014;137(7):1856-7. [DOI:10.1093/brain/awu125] [PMID]
2. Lee JL. Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci. 2008;11(11):1264-6. [DOI:10.1038/nn.2205] [PMID]
3. Barry DN, Maguire EA. Remote memory and the hippocampus: A constructive critique. Trends Cogn Sci. 2019;23(2):128-42. [DOI:10.1016/j.tics.2018.11.005] [PMID]
4. Bartsch T. The clinical neurobiology of the hippocampus: An integrative view: Oxford University Press; 2012: 214-9 [DOI:10.1093/acprof:oso/9780199592388.001.0001]
5. Hashemi P, Babaei JF, Vazifekhah S, Nikbakht F. Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran J Basic Med Sci. 2019; 22(7): 752-8.
6. Vazifehkhah S, Ali MK, Babae JF, Hashemi P, Alireza MS, Nikbakht F. Evaluation of the ameliorative effects of oral administration of metformin on epileptogenesis in the temporal lobe epilepsy model in rats. Life Sci. 2020;257:11806. [DOI:10.1016/j.lfs.2020.118066] [PMID]
7. Coras R, Pauli E, Li J, Schwarz M, Rössler K, Buchfelder M, et al. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. Brain. 2014;137(7):1945-57. [DOI:10.1093/brain/awu100] [PMID]
8. Panegyres P. The contribution of the study of neurodegenerative disorders to the understanding of human memory. Qjm. 2004;97(9):555-67. [DOI:10.1093/qjmed/hch096] [PMID]
9. Hernandez-Rapp J, Rainone S, Hébert SS. MicroRNAs underlying memory deficits in neurodegenerative disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2017;73:79-86. [DOI:10.1016/j.pnpbp.2016.04.011] [PMID]
10. Alzoubi KH, Khabour OF, Salah HA, Rashid BEA. The combined effect of sleep deprivation and Western diet on spatial learning and memory: role of BDNF and oxidative stress. J Mol Neurosci. 2013 May;50(1):124-33. [DOI:10.1007/s12031-012-9881-7] [PMID]
11. Shin E-J, Jeong JH, Chung YH, Kim W-K, Ko K-H, Bach J-H, et al. Role of oxidative stress in epileptic seizures. Neurochem Int. 2011;59(2):122-37. [DOI:10.1016/j.neuint.2011.03.025] [PMID] []
12. Baluchnejadmojarad T, Roghani M. Coenzyme q10 ameliorates neurodegeneration, mossy fiber sprouting, and oxidative stress in intrahippocampal kainate model of temporal lobe epilepsy in rat. J Mol Neurosci. 2013;49(1):194-201. [DOI:10.1007/s12031-012-9886-2] [PMID]
13. Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci. 2001;928(1):168-75. [DOI:10.1111/j.1749-6632.2001.tb05646.x] [PMID]
14. Saki K, Bahmani M, Rafieian-Kopaei M, Hassanzadazar H, Dehghan K, Bahmani F, et al. The most common native medicinal plants used for psychiatric and neurological disorders in Urmia city, northwest of Iran. Asian Pac J Trop Dis. 2014;4:S895-S901. [DOI:10.1016/S2222-1808(14)60754-4]
15. Ciobica A, Olteanu Z, Padurariu M, Hritcu L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson's disease. J Physiol Biochem. 2012;68(1):59-69. [DOI:10.1007/s13105-011-0119-x] [PMID]
16. Nikfarjam M, Bahmani M, Naimi A. Native medicinal plants of Iran effective on Memory and Learning: A Review. Int J Pharmtech Res. 2016;9(5):466-73.
17. Nikbakht F, Khadem Y, Haghani S, Hoseininia H, Sadat AM, Heshemi P, et al. Protective role of apigenin against Aβ 25-35 toxicity via inhibition of mitochondrial cytochrome c release. Basic Clin Neurosci. 2019;10(6):557-66. [DOI:10.32598/bcn.9.10.385] [PMID] []
18. Rahnama S, Rabiei Z, Alibabaei Z, Mokhtari S, Rafieian-Kopaei M, Deris F. Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol Sci. 2015;36(4):553-60. [DOI:10.1007/s10072-014-1991-2] [PMID]
19. Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline. 2008;3:363-9.
20. Türkez H, Aydın E. In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicol Ind Health. 2016;32(1):168-76. [DOI:10.1177/0748233713498456] [PMID]
21. Bertouche S, Tomao V, Ruiz K, Hellal A, Boutekedjiret C, Chemat F. First approach on moisture determination in food products using alpha-pinene as an alternative solvent for Dean-Stark distillation. Food Chem. 2012;134(1):602-5. [DOI:10.1016/j.foodchem.2012.02.158]
22. Saeedipour S, Rafieirad M. Anti-anxiety effect of Alpha-pinene in comparison with Diazepam in adult male rats. KAUMS Journal (FEYZ). 2020;24(3):253-45.
23. Ho C-L, Tseng Y-H, Wang EI-C, Liao P-C, Chou J-C, Lin C-N, et al. Composition, antioxidant and antimicrobial activities of the seed essential oil of Calocedrus formosana from Taiwan. Nat Prod Commun. 2011;6(1):1934578X1100600132. [DOI:10.1177/1934578X1100600132]
24. Kim D-S, Lee H-J, Jeon Y-D, Han Y-H, Kee J-Y, Kim H-J, et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med. 2015;43(04):731-42. [DOI:10.1142/S0192415X15500457] [PMID]
25. Lee G-Y, Lee C, Park GH, Jang J-H. Amelioration of Scopolamine-Induced Learning and Memory Impairment by Multiple Bioactivities of Traditional Medicinal Herbs for Treatment of Neurodegenerative Diseases. Evid Based Complement Alternat Med. Available from: vol. 2017, Article ID 4926815, 9 pages, 2017. [DOI:10.1155/2017/4926815] [PMID] []
27. Goudarzi S, Rafieirad M. Evaluating the effect of α-pinene on motor activity, avoidance memory and lipid peroxidation in animal model of Parkinson disease in adult male rats. RJP. 2017;4(2):53-63.
28. Khan‐Mohammadi‐Khorrami MK, Asle‐Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha‐pinene is mediated by suppression of the TNF‐α/NF‐κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol. 2022;36(5):e23006. doi: 10.1002/jbt.23006. [DOI:10.1002/jbt.23006] [PMID]
29. Malik J, Karan M, Dogra R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: possible antioxidant mechanism. Pharm Biol. 2017;55(1):980-90. [DOI:10.1080/13880209.2017.1285945] [PMID] []
30. Tashakori-Miyanroudi M, Ramazi S, Hashemi P, Nazari-Serenjeh M, Baluchnejadmojarad T, Roghani M. Acetyl-L-Carnitine Exerts Neuroprotective and Anticonvulsant Effect in Kainate Murine Model of Temporal Lobe Epilepsy. J Mol Neurosci. 2022; 72: 1224-1233. [DOI:10.1007/s12031-022-01999-8] [PMID]
31. Tashakori-Miyanroudi M, Souresrafil A, Hashemi P, Ehsanzadeh SJ, Farrahizadeh M, Behroozi Z. Prevalence of depression, anxiety, and psychological distress in patients with epilepsy during COVID-19: A systematic review. Epilepsy Behav. 2021;125:108410. [DOI:10.1016/j.yebeh.2021.108410] [PMID] []
32. Salim S. Oxidative stress and psychological disorders. Curr Neuropharmacol. 2014;12(2):140-7. [DOI:10.2174/1570159X11666131120230309] [PMID] []
33. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017; 360(1):201-5. [DOI:10.1124/jpet.116.237503] [PMID] []
34. Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, et al. Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biol Psychiatry. 2013;74(1):62-8. [DOI:10.1016/j.biopsych.2013.01.005] [PMID]
35. Huang T-T, Zou Y, Corniola R, editors. Oxidative stress and adult neurogenesis-effects of radiation and superoxide dismutase deficiency. Semin Cell Dev Biol. 2012; 23(7):738-744. [DOI:10.1016/j.semcdb.2012.04.003] [PMID] []
36. Guan Z-z. Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer's disease. Acta Pharmacol Sin. 2008;29(7):773-80. [DOI:10.1111/j.1745-7254.2008.00819.x] [PMID]
37. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, et al. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's disease: understanding the therapeutics strategies. Mol Neurobiol. 2016;53(1):648-61. [DOI:10.1007/s12035-014-9053-6] [PMID] []
38. Mohsenzadeh A, Ahmadipour S, Ahmadipour S, Asadi-Samani M. Iran's medicinal plants effective on fever in children: A review. Pharm Lett. 2016;8(1):129-34.
39. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-14. [DOI:10.1016/j.ibror.2020.07.007] [PMID] []
40. Allenspach M, Steuer C. α-Pinene: A never-ending story. Phytochemistry. 2021;190:112857. [DOI:10.1016/j.phytochem.2021.112857] [PMID]
41. Ahmadi-kanali R, Abbasnejad M, Esmaeili-Mahani S, Pourrahimi AM, Kooshki R. Effects of Intra-hippocampal Administration of Alpha-pinene on Learning and Memory Performances in Adult Male Rats. JMUMS. 2021;31(200):26-37.
42. Bartsch T, Arzy S. Human memory: insights into hippocampal networks in epilepsy. Brain. 2014;137(7):1856-7. [DOI:10.1093/brain/awu125] [PMID]
43. Lee JL. Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci. 2008;11(11):1264-6. [DOI:10.1038/nn.2205] [PMID]
44. Barry DN, Maguire EA. Remote memory and the hippocampus: A constructive critique. Trends Cogn Sci. 2019;23(2):128-42. [DOI:10.1016/j.tics.2018.11.005] [PMID]
45. Bartsch T. The clinical neurobiology of the hippocampus: An integrative view: Oxford University Press; 2012: 214-9 [DOI:10.1093/acprof:oso/9780199592388.001.0001]
46. Hashemi P, Babaei JF, Vazifekhah S, Nikbakht F. Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran J Basic Med Sci. 2019; 22(7): 752-8.
47. Vazifehkhah S, Ali MK, Babae JF, Hashemi P, Alireza MS, Nikbakht F. Evaluation of the ameliorative effects of oral administration of metformin on epileptogenesis in the temporal lobe epilepsy model in rats. Life Sci. 2020;257:11806. [DOI:10.1016/j.lfs.2020.118066] [PMID]
48. Coras R, Pauli E, Li J, Schwarz M, Rössler K, Buchfelder M, et al. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. Brain. 2014;137(7):1945-57. [DOI:10.1093/brain/awu100] [PMID]
49. Panegyres P. The contribution of the study of neurodegenerative disorders to the understanding of human memory. Qjm. 2004;97(9):555-67. [DOI:10.1093/qjmed/hch096] [PMID]
50. Hernandez-Rapp J, Rainone S, Hébert SS. MicroRNAs underlying memory deficits in neurodegenerative disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2017;73:79-86. [DOI:10.1016/j.pnpbp.2016.04.011] [PMID]
51. Alzoubi KH, Khabour OF, Salah HA, Rashid BEA. The combined effect of sleep deprivation and Western diet on spatial learning and memory: role of BDNF and oxidative stress. J Mol Neurosci. 2013 May;50(1):124-33. [DOI:10.1007/s12031-012-9881-7] [PMID]
52. Shin E-J, Jeong JH, Chung YH, Kim W-K, Ko K-H, Bach J-H, et al. Role of oxidative stress in epileptic seizures. Neurochem Int. 2011;59(2):122-37. [DOI:10.1016/j.neuint.2011.03.025] [PMID] []
53. Baluchnejadmojarad T, Roghani M. Coenzyme q10 ameliorates neurodegeneration, mossy fiber sprouting, and oxidative stress in intrahippocampal kainate model of temporal lobe epilepsy in rat. J Mol Neurosci. 2013;49(1):194-201. [DOI:10.1007/s12031-012-9886-2] [PMID]
54. Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci. 2001;928(1):168-75. [DOI:10.1111/j.1749-6632.2001.tb05646.x] [PMID]
55. Saki K, Bahmani M, Rafieian-Kopaei M, Hassanzadazar H, Dehghan K, Bahmani F, et al. The most common native medicinal plants used for psychiatric and neurological disorders in Urmia city, northwest of Iran. Asian Pac J Trop Dis. 2014;4:S895-S901. [DOI:10.1016/S2222-1808(14)60754-4]
56. Ciobica A, Olteanu Z, Padurariu M, Hritcu L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson's disease. J Physiol Biochem. 2012;68(1):59-69. [DOI:10.1007/s13105-011-0119-x] [PMID]
57. Nikfarjam M, Bahmani M, Naimi A. Native medicinal plants of Iran effective on Memory and Learning: A Review. Int J Pharmtech Res. 2016;9(5):466-73.
58. Nikbakht F, Khadem Y, Haghani S, Hoseininia H, Sadat AM, Heshemi P, et al. Protective role of apigenin against Aβ 25-35 toxicity via inhibition of mitochondrial cytochrome c release. Basic Clin Neurosci. 2019;10(6):557-66. [DOI:10.32598/bcn.9.10.385] [PMID] []
59. Rahnama S, Rabiei Z, Alibabaei Z, Mokhtari S, Rafieian-Kopaei M, Deris F. Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol Sci. 2015;36(4):553-60. [DOI:10.1007/s10072-014-1991-2] [PMID]
60. Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline. 2008;3:363-9.
61. Türkez H, Aydın E. In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicol Ind Health. 2016;32(1):168-76. [DOI:10.1177/0748233713498456] [PMID]
62. Bertouche S, Tomao V, Ruiz K, Hellal A, Boutekedjiret C, Chemat F. First approach on moisture determination in food products using alpha-pinene as an alternative solvent for Dean-Stark distillation. Food Chem. 2012;134(1):602-5. [DOI:10.1016/j.foodchem.2012.02.158]
63. Saeedipour S, Rafieirad M. Anti-anxiety effect of Alpha-pinene in comparison with Diazepam in adult male rats. KAUMS Journal (FEYZ). 2020;24(3):253-45.
64. Ho C-L, Tseng Y-H, Wang EI-C, Liao P-C, Chou J-C, Lin C-N, et al. Composition, antioxidant and antimicrobial activities of the seed essential oil of Calocedrus formosana from Taiwan. Nat Prod Commun. 2011;6(1):1934578X1100600132. [DOI:10.1177/1934578X1100600132]
65. Kim D-S, Lee H-J, Jeon Y-D, Han Y-H, Kee J-Y, Kim H-J, et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med. 2015;43(04):731-42. [DOI:10.1142/S0192415X15500457] [PMID]
66. Lee G-Y, Lee C, Park GH, Jang J-H. Amelioration of Scopolamine-Induced Learning and Memory Impairment by Multiple Bioactivities of Traditional Medicinal Herbs for Treatment of Neurodegenerative Diseases. Evid Based Complement Alternat Med. Available from: vol. 2017, Article ID 4926815, 9 pages, 2017. [DOI:10.1155/2017/4926815] [PMID] []
67. Goudarzi S, Rafieirad M. Evaluating the effect of α-pinene on motor activity, avoidance memory and lipid peroxidation in animal model of Parkinson disease in adult male rats. RJP. 2017;4(2):53-63.
68. Khan‐Mohammadi‐Khorrami MK, Asle‐Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha‐pinene is mediated by suppression of the TNF‐α/NF‐κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol. 2022;36(5):e23006. doi: 10.1002/jbt.23006. [DOI:10.1002/jbt.23006] [PMID]
69. Malik J, Karan M, Dogra R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: possible antioxidant mechanism. Pharm Biol. 2017;55(1):980-90. [DOI:10.1080/13880209.2017.1285945] [PMID] []
70. Tashakori-Miyanroudi M, Ramazi S, Hashemi P, Nazari-Serenjeh M, Baluchnejadmojarad T, Roghani M. Acetyl-L-Carnitine Exerts Neuroprotective and Anticonvulsant Effect in Kainate Murine Model of Temporal Lobe Epilepsy. J Mol Neurosci. 2022; 72: 1224-1233. [DOI:10.1007/s12031-022-01999-8] [PMID]
71. Tashakori-Miyanroudi M, Souresrafil A, Hashemi P, Ehsanzadeh SJ, Farrahizadeh M, Behroozi Z. Prevalence of depression, anxiety, and psychological distress in patients with epilepsy during COVID-19: A systematic review. Epilepsy Behav. 2021;125:108410. [DOI:10.1016/j.yebeh.2021.108410] [PMID] []
72. Salim S. Oxidative stress and psychological disorders. Curr Neuropharmacol. 2014;12(2):140-7. [DOI:10.2174/1570159X11666131120230309] [PMID] []
73. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017; 360(1):201-5. [DOI:10.1124/jpet.116.237503] [PMID] []
74. Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, et al. Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biol Psychiatry. 2013;74(1):62-8. [DOI:10.1016/j.biopsych.2013.01.005] [PMID]
75. Huang T-T, Zou Y, Corniola R, editors. Oxidative stress and adult neurogenesis-effects of radiation and superoxide dismutase deficiency. Semin Cell Dev Biol. 2012; 23(7):738-744. [DOI:10.1016/j.semcdb.2012.04.003] [PMID] []
76. Guan Z-z. Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer's disease. Acta Pharmacol Sin. 2008;29(7):773-80. [DOI:10.1111/j.1745-7254.2008.00819.x] [PMID]
77. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, et al. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's disease: understanding the therapeutics strategies. Mol Neurobiol. 2016;53(1):648-61. [DOI:10.1007/s12035-014-9053-6] [PMID] []
78. Mohsenzadeh A, Ahmadipour S, Ahmadipour S, Asadi-Samani M. Iran's medicinal plants effective on fever in children: A review. Pharm Lett. 2016;8(1):129-34.
79. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-14. [DOI:10.1016/j.ibror.2020.07.007] [PMID] []
80. Allenspach M, Steuer C. α-Pinene: A never-ending story. Phytochemistry. 2021;190:112857. [DOI:10.1016/j.phytochem.2021.112857] [PMID]
81. Ahmadi-kanali R, Abbasnejad M, Esmaeili-Mahani S, Pourrahimi AM, Kooshki R. Effects of Intra-hippocampal Administration of Alpha-pinene on Learning and Memory Performances in Adult Male Rats. JMUMS. 2021;31(200):26-37.
82. Bartsch T, Arzy S. Human memory: insights into hippocampal networks in epilepsy. Brain. 2014;137(7):1856-7. [DOI:10.1093/brain/awu125] [PMID]
83. Lee JL. Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci. 2008;11(11):1264-6. [DOI:10.1038/nn.2205] [PMID]
84. Barry DN, Maguire EA. Remote memory and the hippocampus: A constructive critique. Trends Cogn Sci. 2019;23(2):128-42. [DOI:10.1016/j.tics.2018.11.005] [PMID]
85. Bartsch T. The clinical neurobiology of the hippocampus: An integrative view: Oxford University Press; 2012: 214-9 [DOI:10.1093/acprof:oso/9780199592388.001.0001]
86. Hashemi P, Babaei JF, Vazifekhah S, Nikbakht F. Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran J Basic Med Sci. 2019; 22(7): 752-8.
87. Vazifehkhah S, Ali MK, Babae JF, Hashemi P, Alireza MS, Nikbakht F. Evaluation of the ameliorative effects of oral administration of metformin on epileptogenesis in the temporal lobe epilepsy model in rats. Life Sci. 2020;257:11806. [DOI:10.1016/j.lfs.2020.118066] [PMID]
88. Coras R, Pauli E, Li J, Schwarz M, Rössler K, Buchfelder M, et al. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. Brain. 2014;137(7):1945-57. [DOI:10.1093/brain/awu100] [PMID]
89. Panegyres P. The contribution of the study of neurodegenerative disorders to the understanding of human memory. Qjm. 2004;97(9):555-67. [DOI:10.1093/qjmed/hch096] [PMID]
90. Hernandez-Rapp J, Rainone S, Hébert SS. MicroRNAs underlying memory deficits in neurodegenerative disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2017;73:79-86. [DOI:10.1016/j.pnpbp.2016.04.011] [PMID]
91. Alzoubi KH, Khabour OF, Salah HA, Rashid BEA. The combined effect of sleep deprivation and Western diet on spatial learning and memory: role of BDNF and oxidative stress. J Mol Neurosci. 2013 May;50(1):124-33. [DOI:10.1007/s12031-012-9881-7] [PMID]
92. Shin E-J, Jeong JH, Chung YH, Kim W-K, Ko K-H, Bach J-H, et al. Role of oxidative stress in epileptic seizures. Neurochem Int. 2011;59(2):122-37. [DOI:10.1016/j.neuint.2011.03.025] [PMID] []
93. Baluchnejadmojarad T, Roghani M. Coenzyme q10 ameliorates neurodegeneration, mossy fiber sprouting, and oxidative stress in intrahippocampal kainate model of temporal lobe epilepsy in rat. J Mol Neurosci. 2013;49(1):194-201. [DOI:10.1007/s12031-012-9886-2] [PMID]
94. Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci. 2001;928(1):168-75. [DOI:10.1111/j.1749-6632.2001.tb05646.x] [PMID]
95. Saki K, Bahmani M, Rafieian-Kopaei M, Hassanzadazar H, Dehghan K, Bahmani F, et al. The most common native medicinal plants used for psychiatric and neurological disorders in Urmia city, northwest of Iran. Asian Pac J Trop Dis. 2014;4:S895-S901. [DOI:10.1016/S2222-1808(14)60754-4]
96. Ciobica A, Olteanu Z, Padurariu M, Hritcu L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson's disease. J Physiol Biochem. 2012;68(1):59-69. [DOI:10.1007/s13105-011-0119-x] [PMID]
97. Nikfarjam M, Bahmani M, Naimi A. Native medicinal plants of Iran effective on Memory and Learning: A Review. Int J Pharmtech Res. 2016;9(5):466-73.
98. Nikbakht F, Khadem Y, Haghani S, Hoseininia H, Sadat AM, Heshemi P, et al. Protective role of apigenin against Aβ 25-35 toxicity via inhibition of mitochondrial cytochrome c release. Basic Clin Neurosci. 2019;10(6):557-66. [DOI:10.32598/bcn.9.10.385] [PMID] []
99. Rahnama S, Rabiei Z, Alibabaei Z, Mokhtari S, Rafieian-Kopaei M, Deris F. Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol Sci. 2015;36(4):553-60. [DOI:10.1007/s10072-014-1991-2] [PMID]
100. Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline. 2008;3:363-9.
101. Türkez H, Aydın E. In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicol Ind Health. 2016;32(1):168-76. [DOI:10.1177/0748233713498456] [PMID]
102. Bertouche S, Tomao V, Ruiz K, Hellal A, Boutekedjiret C, Chemat F. First approach on moisture determination in food products using alpha-pinene as an alternative solvent for Dean-Stark distillation. Food Chem. 2012;134(1):602-5. [DOI:10.1016/j.foodchem.2012.02.158]
103. Saeedipour S, Rafieirad M. Anti-anxiety effect of Alpha-pinene in comparison with Diazepam in adult male rats. KAUMS Journal (FEYZ). 2020;24(3):253-45.
104. Ho C-L, Tseng Y-H, Wang EI-C, Liao P-C, Chou J-C, Lin C-N, et al. Composition, antioxidant and antimicrobial activities of the seed essential oil of Calocedrus formosana from Taiwan. Nat Prod Commun. 2011;6(1):1934578X1100600132. [DOI:10.1177/1934578X1100600132]
105. Kim D-S, Lee H-J, Jeon Y-D, Han Y-H, Kee J-Y, Kim H-J, et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med. 2015;43(04):731-42. [DOI:10.1142/S0192415X15500457] [PMID]
106. Lee G-Y, Lee C, Park GH, Jang J-H. Amelioration of Scopolamine-Induced Learning and Memory Impairment by Multiple Bioactivities of Traditional Medicinal Herbs for Treatment of Neurodegenerative Diseases. Evid Based Complement Alternat Med. Available from: vol. 2017, Article ID 4926815, 9 pages, 2017. [DOI:10.1155/2017/4926815] [PMID] []
108. Goudarzi S, Rafieirad M. Evaluating the effect of α-pinene on motor activity, avoidance memory and lipid peroxidation in animal model of Parkinson disease in adult male rats. RJP. 2017;4(2):53-63.
109. Khan‐Mohammadi‐Khorrami MK, Asle‐Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha‐pinene is mediated by suppression of the TNF‐α/NF‐κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol. 2022;36(5):e23006. doi: 10.1002/jbt.23006. [DOI:10.1002/jbt.23006] [PMID]
110. Malik J, Karan M, Dogra R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: possible antioxidant mechanism. Pharm Biol. 2017;55(1):980-90. [DOI:10.1080/13880209.2017.1285945] [PMID] []
111. Tashakori-Miyanroudi M, Ramazi S, Hashemi P, Nazari-Serenjeh M, Baluchnejadmojarad T, Roghani M. Acetyl-L-Carnitine Exerts Neuroprotective and Anticonvulsant Effect in Kainate Murine Model of Temporal Lobe Epilepsy. J Mol Neurosci. 2022; 72: 1224-1233. [DOI:10.1007/s12031-022-01999-8] [PMID]
112. Tashakori-Miyanroudi M, Souresrafil A, Hashemi P, Ehsanzadeh SJ, Farrahizadeh M, Behroozi Z. Prevalence of depression, anxiety, and psychological distress in patients with epilepsy during COVID-19: A systematic review. Epilepsy Behav. 2021;125:108410. [DOI:10.1016/j.yebeh.2021.108410] [PMID] []
113. Salim S. Oxidative stress and psychological disorders. Curr Neuropharmacol. 2014;12(2):140-7. [DOI:10.2174/1570159X11666131120230309] [PMID] []
114. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017; 360(1):201-5. [DOI:10.1124/jpet.116.237503] [PMID] []
115. Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, et al. Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biol Psychiatry. 2013;74(1):62-8. [DOI:10.1016/j.biopsych.2013.01.005] [PMID]
116. Huang T-T, Zou Y, Corniola R, editors. Oxidative stress and adult neurogenesis-effects of radiation and superoxide dismutase deficiency. Semin Cell Dev Biol. 2012; 23(7):738-744. [DOI:10.1016/j.semcdb.2012.04.003] [PMID] []
117. Guan Z-z. Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer's disease. Acta Pharmacol Sin. 2008;29(7):773-80. [DOI:10.1111/j.1745-7254.2008.00819.x] [PMID]
118. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, et al. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's disease: understanding the therapeutics strategies. Mol Neurobiol. 2016;53(1):648-61. [DOI:10.1007/s12035-014-9053-6] [PMID] []
119. Mohsenzadeh A, Ahmadipour S, Ahmadipour S, Asadi-Samani M. Iran's medicinal plants effective on fever in children: A review. Pharm Lett. 2016;8(1):129-34.
120. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-14. [DOI:10.1016/j.ibror.2020.07.007] [PMID] []
121. Allenspach M, Steuer C. α-Pinene: A never-ending story. Phytochemistry. 2021;190:112857. [DOI:10.1016/j.phytochem.2021.112857] [PMID]
122. Ahmadi-kanali R, Abbasnejad M, Esmaeili-Mahani S, Pourrahimi AM, Kooshki R. Effects of Intra-hippocampal Administration of Alpha-pinene on Learning and Memory Performances in Adult Male Rats. JMUMS. 2021;31(200):26-37.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA

Ethics code: IR.MUK.REC.1398.251



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi P, Rahmani H, Moloudi M R, Vahabzadeh Z, Izadpanah E. Alpha-Pinene Effect on the Improvement of Working and Spatial memory in Rats. SJKU 2023; 28 (2) :28-39
URL: http://sjku.muk.ac.ir/article-1-7312-fa.html

هاشمی پریا، رحمانی هلیا، مولودی محمد رامان، وهاب زاده ذکریا، ایزدپناه اسماعیل. اثر آلفاپاینن بر بهبود حافظه کاری و فضایی در موش های صحرایی. مجله علمي دانشگاه علوم پزشكي كردستان. 1402; 28 (2) :28-39

URL: http://sjku.muk.ac.ir/article-1-7312-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 28، شماره 2 - ( مجله علمی دانشگاه علوم پزشکی کردستان 1402 ) برگشت به فهرست نسخه ها
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.07 seconds with 46 queries by YEKTAWEB 4710