:: Volume 23, Issue 2 (Scientific Journal of Kurdistan University of Medical Sciences 2018) ::
SJKU 2018, 23(2): 92-102 Back to browse issues page
Effect of endurance training intensity (low, moderate and high) on the expression of skeletal muscle ATGL protein and serum levels of insulin and glucose in male diabetic rats
Mohammad Hasan Dashti Khavidaki 1, Mohammad Faramarzi Dr * 2, Akbar Azamian Jazi Dr3, Ebrahim Banitalebi Dr4
1- Shahrekord University, Shahrekord, Iran.
2- Associated Professor Shahrekord University, Shahrekord, Iran , md.faramarzi@gmail.com
3- Associated Professor Shahrekord University,Shahrekord, Iran.
4- Shahrekord University, Iran.
Abstract:   (184 Views)
Background and Aim: The purpose of this study was to investigate the effect of endurance training intensity (low, moderate and high) on the expression of skeletal muscle ATGL protein and serum levels of insulin and glucose in male diabetic rats.
Material and Method: 40 streptozotocin induced diabetic male Wistar rats were randomly assigned to five groups of eight, including low (DL , moderate (DM) and high intensity (DH) endurance training diabetic groups, diabetic control group (D), and healthy control group (Con). Three sessions of endurance training with low intensity (DL( equivalent to 5-8 m / min, moderate intensity (DM) equivalent to 17-14 m / min and high intensity (DH) equivalent to 25-22 m / min were performed every week for eight weeks. The relative expression of ATGL protein was measured with western blot technique. Serum insulin and glucose levels were measured by ELISA method. To determine the difference between the groups we used one way ANOVA test.
Result: The results showed a significant difference in the expression of ATGL between the control and training groups (with low, moderate and high intensity) (p=0.0002). This difference was significant between DH and D (p=0.0049), DH and DL (p = 0.0053) and also between DH and DM (P = 0.0136) groups. Serum glucose levels were also significantly different between the DH group with the groups D (p = 0.002) and DL (p = 0.039), also, the DM group with groups D (p = 0.0018) and DL (p = 0.0165). There was a significant difference in the amount of insulin in the DH group compared to the groups DL (p = 0.011), D (p = 0.0002), and the DM group with D (p = 0.014).
Conclusion: Moderate and high intensity endurance training can to some extent compensate for diabetes-induced reduction in the expression of ATGL protein and cause reduction of serum insulin and glucose levels in diabetic rats. It seems higher intensity of endurance training can lead to greater increase in expression of ATGL in diabetic rats.
Keywords: Diabetes, ATGL, Endurance training intensity, Insulin, Glucose.
Received: Oct 17, 2017     Accepted: Jan 29, 2018
Keywords: Diabetes, ATGL, Endurance training intensity, Insulin, Glucose.
Full-Text [PDF 552 kb]   (105 Downloads)    
Type of Study: Research | Subject: General
Received: 2018/05/31 | Accepted: 2018/05/31 | Published: 2018/05/31
1. 1. Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid–induced insulin resistance. J Clin Invest 2007;117:1690. [DOI:10.1172/JCI30566]
2. Shepherd SO, Cocks M, Tipton K, Ranasinghe AM, Barker TA, Burniston JG, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 2013; 591: 657-75. [DOI:10.1113/jphysiol.2012.240952]
3. Fröberg SO, Mossfeldt F. Effect of prolonged strenuous exercise on the concentration of triglycerides, phospholipids and glycogen in muscle of man. Acta Physiologica 1971;82:167-71. [DOI:10.1111/j.1748-1716.1971.tb04955.x]
4. MacPherson RE, Ramos SV, Vandenboom R, Roy BD, Peters SJ. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. Am J Physiol Regul Integr Comp 2013;304: R644-R50. [DOI:10.1152/ajpregu.00418.2012]
5. Prats C, Donsmark M, Qvortrup K, Londos C, Sztalryd C, Holm C, et al. Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. J Lipid Res 2006; 47: 2392-9. [DOI:10.1194/jlr.M600247-JLR200]
6. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306: 1383-6. [DOI:10.1126/science.1100747]
7. Fanelli C, Calderone S, Epifano L, De Vincenzo A, Modarelli F, Pampanelli S, et al. Demonstration of a critical role for free fatty acids in mediating counterregulatory stimulation of gluconeogenesis and suppression of glucose utilization in humans. J Clin Invest 1993; 92: 1617. [DOI:10.1172/JCI116746]
8. Villena JA, Roy S, Sarkadi-Nagy E, Kim K-H, Sul HS. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 2004; 279: 47066-75. [DOI:10.1074/jbc.M403855200]
9. Wei Wu J, Wang SP, Casavant S, Moreau A, Yang GS, Mitchell GA. Fasting energy homeostasis in mice with adipose deficiency of desnutrin/adipose triglyceride lipase. Endocrinology 2012; 153: 2198-207. [DOI:10.1210/en.2011-1518]
10. Sitnick MT, Basantani MK, Cai L, Schoiswohl G, Yazbeck CF, Distefano G, et al. Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity. Diabetes 2013; 62: 3350-61. [DOI:10.2337/db13-0500]
11. Fischer J, Lefèvre C, Morava E, Mussini J-M, Laforêt P, Negre-Salvayre A, et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 2007; 39: 28-30. [DOI:10.1038/ng1951]
12. Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 2009; 297: E289-E96. [DOI:10.1152/ajpendo.00099.2009]
13. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006; 312: 734-7. [DOI:10.1126/science.1123965]
14. Alsted TJ, Nybo L, Schweiger M, Fledelius C, Jacobsen P, Zimmermann R, et al. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am J Physiol Endocrinol Metab 2009; 296: E445-E53. [DOI:10.1152/ajpendo.90912.2008]
15. Achten J, Gleeson M, Jeukendrup AE. Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc 2002; 34: 92-7. [DOI:10.1097/00005768-200201000-00015]
16. Valizadeh A, Khosravi A, Azmoon H. Fat oxidation rate during and after three exercise intensities in non-athlete young men. WASJ 2011; 15: 1260-6. [In Persian]
17. Hashimoto T, Sato K, Iemitsu M. Exercise-inducible factors to activate lipolysis in adipocytes. J Appl Physiol 2013; 115: 260-7. [DOI:10.1152/japplphysiol.00427.2013]
18. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50: 537-46.
19. Pushparaj P, Low H, Manikandan J, Tan B, Tan C. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J Ethnopharmacol 2007; 111: 430-4. [DOI:10.1016/j.jep.2006.11.028]
20. Wisløff U, Helgerud J, Kemi OJ, Ellingsen Ø. Intensity-controlled treadmill running in rats: V̇ o 2 max and cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2001; 280: H1301-H10. [DOI:10.1152/ajpheart.2001.280.3.H1301]
21. Kim D-H, Kim S-H, Kim W-H, Moon C-R. The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-α of soleus muscle in obese Zucker rats. J Exerc Nutrition Biochem 2013; 17: 199–207. [DOI:10.5717/jenb.2013.17.4.199]
22. Ghafari M, Banitalebi E, Faramarzi M, Mohebi A. Comparison of Two Intensities of Aerobic Training (low intensity and High Intensity) on Expression of Perlipin 2 Skeletal Muscle, Serum Glucose and Insulin levels in Streptozotocin-Diabetic Rats. Armaghane danesh 2017; 22: 282-94. [In Persian]
23. Laurens C, Moro C. Intramyocellular fat storage in metabolic diseases. HMBCI 2016; 26: 43-52. [DOI:10.1515/hmbci-2015-0045]
24. Badin P-M, Langin D, Moro C. Dynamics of skeletal muscle lipid pools. Trends Endocrinol Metab 2013; 24: 607-15. [DOI:10.1016/j.tem.2013.08.001]
25. Assarzade Noushabadi Mohsen, Abedi B. The combined effects of exercise on insulin resistance and some inflammatory markers in men inactive. Horizon Med Sci 2012; 18: 96-101. [In Persian]
26. Kim ES, Im JA, Kim KC, Park JH, Suh SH, Kang ES, et al. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity 2007; 15: 3023-30. [DOI:10.1038/oby.2007.360]
27. Pasman W, Westerterp-Plantenga M, Saris W. The effect of exercise training on leptin levels in obese males. Am J Physiol Endocrinol Metab 1998; 274: E280-E6. [DOI:10.1152/ajpendo.1998.274.2.E280]
28. Kelley DE, Goodpaster BH. Effects of physical activity on insulin action and glucose tolerance in obesity. Med Sci Sports Exerc 1999; 31: S619-23. [DOI:10.1097/00005768-199911001-00021]
29. Ivy JL. Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Med 1997; 24: 321-36. [DOI:10.2165/00007256-199724050-00004]
30. James D, Burleigh K, Kraegen EW, Chisholm D. Effect of acute exercise and prolonged training on insulin response to intravenous glucose in vivo in rat. J Appl Physiol 1983; 55: 1660-4. [DOI:10.1152/jappl.1983.55.6.1660]
31. Berger M, Kemmer F, Becker K, Herberg L, Schwenen M, Gjinavci A, et al. Effect of physical training on glucose tolerance and on glucose metabolism of skeletal muscle in anaesthetized normal rats. Diabetologia 1979; 16: 179-84. [DOI:10.1007/BF01219795]
32. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009; 32: S157-S63. [DOI:10.2337/dc09-S302]
33. Stephenson EJ1, Smiles W, Hawley JA.The relationship between exercise, nutrition and type 2 diabetes. Med Sport Sci 2014; 60: 1-10. [DOI:10.1159/000357331]
34. Sajadian S, Nikooie R. TGF-β1 protein expression in the skeletal muscle following high interval training and its relationship with intramuscular triglycerides oxidation. Journal of Sport in Biomotor Sciences 2015; 6: 45-54. [In Persian]
35. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Eur J Appl Physiol 1984; 56: 831-8. [DOI:10.1152/jappl.1984.56.4.831]
36. Kim C-H, Kim M-S, Youn J-Y, Park H-S, Song H-S, Song KH, et al. Lipolysis in skeletal muscle is decreased in high-fat-fed rats. Metabolism 2003; 52: 1586-92. [DOI:10.1016/S0026-0495(03)00328-7]
37. Romijn J, Coyle E, Sidossis L, Gastaldelli A, Horowitz J, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab 1993; 265: E380-E91. [DOI:10.1152/ajpendo.1993.265.3.E380]
38. Turnbull PC, Longo AB, Ramos SV, Roy BD, Ward WE, Peters SJ. Increases in skeletal muscle ATGL and its inhibitor G0S2 following 8 weeks of endurance training in metabolically different rat skeletal muscles. Am J Physiol Regul Integr Comp Physiol 2016; 31: R125-R33. [DOI:10.1152/ajpregu.00062.2015]
39. Yao-Borengasser A, Varma V, Coker RH, Ranganathan G, Phanavanh B, Rasouli N, et al. Adipose triglyceride lipase expression in human adipose tissue and muscle. Role in insulin resistance and response to training and pioglitazone. Metabolism 2011; 60: 1012-20. [DOI:10.1016/j.metabol.2010.10.005]
40. Bosma M. Lipid homeostasis in exercise. Drug discov Today 2014;19:1019-23. [DOI:10.1016/j.drudis.2014.03.007]
41. Holloway GP, Bezaire V, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol 2006; 571: 201-10. [DOI:10.1113/jphysiol.2005.102178]
42. Howe HR, Heidal K, Choi MD, Kraus RM, Boyle K, Hickner RC. Increased adipose tissue lipolysis after a 2-week high-fat diet in sedentary overweight/obese men. Metabolism 2011; 60: 976-81. [DOI:10.1016/j.metabol.2010.09.007]
43. Morville T, Rosenkilde M, Munch-Andersen T, Andersen PR, Kjær GK, Helbo S, et al. Repeated prolonged exercise decreases maximal fat oxidation in older men. Med Sci Sports Exerc 2017; 49: 308-16. [DOI:10.1249/MSS.0000000000001107]
44. Louche K, Badin P-M, Montastier E, Laurens C, Bourlier V, De Glisezinski I, et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab 2013; 98: 4863-71. [DOI:10.1210/jc.2013-2058]

XML   Persian Abstract   Print

Volume 23, Issue 2 (Scientific Journal of Kurdistan University of Medical Sciences 2018) Back to browse issues page