1- Department of Medical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University & Assistant Professor, Department of Medical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran 2- Neuroscience Research Center, Baqiyatullah University of Medical Sciences, Tehran, Iran. AND Army University of Medical Sciences, & PhD student, Neuroscience Research Center, Baqiyatullah University of Medical Sciences, Tehran, Iran. AND Army University of Medical Sciences, Tehran, Iran 3- Department of Medical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University & .Master's student, Department of Medical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran 4- Neuroscience Research Center, Baqiyatullah University of Medical Sciences & Associate Professor, Neuroscience Research Center, Baqiyatullah University of Medical Sciences, Tehran, Iran , boshrahatef@yahoo.com
Abstract: (864 Views)
Background and purpose: The stress system is one of the most important parts of maintaining living of beings. The indices of heart rate variation (HRV) and cortisol hormone are two outputs of stress system activity. The activation of the stress system is not necessarily in a consciousness state and part of it is in the unconscious. The aim of this study is to provide an algorithm for predicting the numerical value of the salivary cortisol concentration using HRV indices. Materials and methods:The samples of this study included 601 healthy adult men (between 20 and 50 years old). The used algorithms were designed to predict the numerical value of salivary cortisol taken from 9:00 AM to 2:00 PM with HRV indicators. In each of the algorithms, a predicted value is compared with the actual value to determine which was more successful. Results: The results of this study showed that the frequency and non-linear indicators of HRV are able to predict the amount of salivary cortisol with use of Multi Layer Perceptron (MLP), XGBoost(XGB), Support Vector Machine(SVM) and Radial Basis Function(RBF) regression algorithms with the average absolute error, 7.78, 8.06, 8.37 and 7.43 percent respectively. Conclusion: In this study, it was found that a set of linear and non-linear indicators of HRV with high power can predict the amount of salivary cortisol in the best case with a low error percentage of 7.43 by the RBF algorithm, and instead of stress self-report that does not cover the physiological part. It can be a more accurate tool in the intelligent evaluation of the stress system.
1. 1.Fastenrath M, Coynel D, Spalek K, Milnik A, Gschwind L, Roozendaal B, et al. Dynamic modulation of amygdala-hippocampal connectivity by emotional arousal. Neurosci. J. 2014;34(42):13935-47. [DOI:10.1523/JNEUROSCI.0786-14.2014] [PMID] []
2. Richard Contrada R, Baum A. The Handbook of Stress Science: Biology, Psychology, and Health. 1 ed: Springer Publishing Company; 2011.
3. Mohammadi A, Emamgoli A, Shirinkalam M, Meftahi GH, Yagoobi K, Hatef B. The persistent effect of acute psychosocial stress on heart rate variability. Egypt Heart J. 2019;71(1):18. [DOI:10.1186/s43044-019-0009-z] [PMID] []
4. Barzegar Marzieh, Gila Pirzad Jahromi, GholamHossein Meftahi, Boshra Hatef. The complexity of EEG signal decreases during the Social Stress Journal Of Medical Signals & Sensors. 2022;In press. [DOI:10.4103/jmss.jmss_131_21] [PMID] []
5. Seo S, Lee J. Convergence and Hybrid Information Technologies, Stress and EEG Crisan M, editor. Busan: INTECH; 2010. [DOI:10.5772/9651]
6. Lee S, Hwang HB, Park S, Kim S, Ha JH, Jang Y, et al. Mental stress assessment using ultra short term HRV analysis based on non-linear method. Biosensors. 2022;12(7):465. doi:10.3390/bios120704657. [DOI:10.3390/bios12070465] [PMID] []
7. Arsalan A, Anwar SM, Majid M. Mental stress detection using data from wearable and non-wearable sensors: a review. arXiv preprint arXiv:220203033. 2022.
8. Mirzaee O, Saneian M, Vani JR, Shahrivar K, Peyravi M, Shariat A, Hatef B. The Psychophysiological Responses of the Chronic Ischemic Stroke Patients to the Acute Stress were Changed. BABT. 2019;62. doi:10.1590/1678-4324-2019180494 [DOI:10.1590/1678-4324-2019180494]
9. Ashtiani AA, Shaygannejad V, Ghobadi F, Bathaie R, Shahyad S, Hatef B. Acute Response of Stress System in Multiple Sclerosis. Archives of Neuroscience. 2021;8(4):9. doi:10.5812/ans.115781. [DOI:10.5812/ans.115781]
10. Ozgocer T, Yildiz S, Uçar C. Development and validation of an enzyme-linked immunosorbent assay for detection of cortisol in human saliva. Journal of Immunoassay and Immunochemistry. 2017;38(2):147-64. doi:10.1080/15321819.2016.1230130 [DOI:10.1080/15321819.2016.1230130] [PMID]
11. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance Front. physiol. 2013;4:26. doi:10.3389/fphys.2013.00026 [DOI:10.3389/fphys.2013.00026]
12. Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? TBME. 2001;48. doi:10.1109/10.959330 [DOI:10.1109/10.959330] [PMID]
13. Perfetto J, Ruiz A, D'Attellis C, editors. Detrended fluctuation analysis (DFA) and RR interval variability: A new linear segmentation algorithm. 2006 Computers in Cardiology; 2006: IEEE.
14. Hamilton JL, Alloy LB. Atypical reactivity of heart rate variability to stress and depression across development: Systematic review of the literature and directions for future research. Clin. Psychol. Rev. 2016;50:67-79. doi:10.1016/j.cpr.2016.09.003 [DOI:10.1016/j.cpr.2016.09.003] [PMID] []
15. Zolotareva E, editor Aiding Long-Term Investment Decisions with XGBoost Machine Learning Model. AISC; 2021 2021//; Cham: Springer International Publishing. [DOI:10.1007/978-3-030-87897-9_37]
16. Yadav N, Yadav A, Kumar M. An introduction to neural network methods for differential equations: Springer; 2015. [DOI:10.1007/978-94-017-9816-7]
17. Majdisova Z, Skala V. Radial basis function approximations: comparison and applications. Appl. Math. Model. 2017;51:728-43. [DOI:10.1016/j.apm.2017.07.033]
18. Botchkarev A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv preprint arXiv:180903006. 2018.
19. Vanitha L, Suresh GR, editors. Hierarchical SVM to detect mental stress in human beings using Heart Rate Variability2014: IEEE. [DOI:10.1109/ICDCSyst.2014.6926145]
20. McDuff D, Gontarek S, Picard R, editors. Remote measurement of cognitive stress via heart rate variability. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2014: IEEE. [DOI:10.1109/EMBC.2014.6944243] [PMID]
21. Kim H-G, Cheon E-J, Bai D-S, Lee YH, Koo B-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018;15(3):235-45. doi:10.30773/pi.2017.08.17 [DOI:10.30773/pi.2017.08.17] [PMID] []
22. Ge F, Yuan M, Li Y, Zhang W. Posttraumatic Stress Disorder and Alterations in Resting Heart Rate Variability: A Systematic Review and Meta-Analysis. Psychiatry Investig. 2020;17(1):9-20. doi:10.30773/pi.2019.0112 [DOI:10.30773/pi.2019.0112] [PMID] []
23. Pan X, Wang Z, Wu X, Wen SW, Liu A. Salivary cortisol in post-traumatic stress disorder: a systematic review and meta-analysis. BMC Psychiatry. 2018;18(1):324. doi:10.1186/s12888-018-1910-9 [DOI:10.1186/s12888-018-1910-9] [PMID] []
24. Jia Y, Liu L, Sheng C, Cheng Z, Cui L, Li M, et al. Increased serum levels of cortisol and inflammatory cytokines in people with depression. J. Nerv. Ment. 2019;207(4):271-6. doi:10.1097/NMD.0000000000000957 [DOI:10.1097/NMD.0000000000000957] [PMID]
25. Munla N, Khalil M, Shahin A, Mourad A, editors. Driver stress level detection using HRV analysis2015: IEEE. [DOI:10.1109/ICABME.2015.7323251]
Noruzi M R, Barzegar M, Alizadeh M, Hatef B. The Algorithm for Predicting the Numerical Value of Salivary Cortisol Based on Heart Rate Variations in the Healthy Men. SJKU 2024; 29 (5) :37-48 URL: http://sjku.muk.ac.ir/article-1-7816-en.html