The effect of allopurinol on high glucose-induced neurotoxicity in PC12 cells

Aminzadeh A., PhD
1. Assistant Professor, Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (Corresponding Author), Tel:+98-34-313225242, a.aminzadeh@kmu.ac.ir
2. Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

ABSTRACT
Background and Aim: Hyperglycemia which occurs in diabetes is one of the main factors which can lead to serious complications such as diabetic neuropathy. There is evidence that allopurinol has neuroprotective effect against many types of damaging stimuli. The present study investigated the effects of allopurinol on high glucose induced neurotoxicity in PC12 cells as a suitable in-vitro model for evaluation of neuronal functions.

Material and Methods: Neurotoxicity was induced by high glucose concentration, and cells were exposed to allopurinol in the presence or absence of high glucose concentration. Cell viability was assessed by MTT assay. Biochemical markers of oxidative stress were investigated by measurement of lipid peroxidation (LPO), total thiol groups, and total antioxidant power (TAP).

Results: The present results indicated that allopurinol significantly inhibited high glucose-induced cell death in PC12 cells. Furthermore, treatment with allopurinol decreased lipid peroxidation level. It also increased the total thiol groups and TAP.

Conclusion: These findings showed protective effects of allopurinol on HG-induced cell death in PC12 cells, which may be related to its antioxidant effect and inhibition of oxidative stress.

Keywords: PC12 cells, Glucose, Neurotoxicity, Allopurinol.

Received: Apr 23, 2016     Accepted: Nov 26, 2016
بررسی ناتیو آلپورونیول بر نوروتکسیسیتی ناشی از غلظت بالایی گلوکز در سلول های PC12

آزمایش امین زاده

1. استادیار، گروه فارماکولوژی و سم شناسی، دانشگاه علوم پزشکی کرمان، کرمان، ایران (مؤلف مسئول، انتقلا تبی: 0213125421) a.aminzadeh@kmu.ac.ir
2. مرکز تحقیقات فارماکولوژی، پژوهشگاه نوروزفریمکولوژی، دانشگاه علوم پزشکی کرمان، کرمان، ایران

چکیده
زمینه و هدف: هیپر گلیسیمی که در شرایط دیابتی رخ می دهد، یکی از عوامل اصلی عوارض دیابت از جمله نوروتکسیتی دیابتی می باشد. شواهدی وجود دارد که نشان می دهد آلپورونیول اثرات نوروتکسیسی بر سیاری از محركات آسیب رسان دارد. این مطالعه به منظور بررسی اثرات آلپورونیول بر نوروتکسیسی ناشی از غلظت بالایی گلوکز در سلول های PC12 که به عنوان یک مدل بروئینی مناسب برای مطالعه سلول های عصبی می باشد انجام شد.

روش بررسی: در سلول های PC12، نوروتکسیسیتی توسط غلظت بالایی گلوکز ایجاد شد و سلول ها در حضور و عدم حضور گلوکز در غلظت بالایی مانند MTT اندازه گیری شد. مارکرهای بیوشیمیایی استرس اکسیدانی با اندازه گیری میزان پراکسیداسیون لیپیدی، گروه های تیول و ظرفیت آنتی اکسیدانی نام بررسی شد.

یافته ها: نتایج نشان داد که آلپورونیول به طور معنی داری، مراکز سلولی ناشی از غلظت بالایی گلوکز را در سلول های PC12 مهار می کند. به علاوه، آلپورونیول میزان پراکسیداسیون لیپیدی را کاهش داد. این دارو همچنین گروه های تیول و ظرفیت آنتی اکسیدانی تام را افزایش داد.

نتیجه گیری: این پژوهش ها نشان می دهد که آلپورونیول اثرات محافظتی بر مراکز سلولی ناشی از غلظت بالایی گلوکز در سلول

کلید واژه ها: سلول های PC12، گلوکز، نوروتکسیسیتی، آلپورونیول

پذیرش: 6/2/95

واصول مقاله: 95/7/20

اصلاحیه نهایی: 95/7/20
Molecular oxygen, metabolites of dietary or biological origin, and hydrogen peroxide, have been reported to cause DNA damage in various cell types, including PC12 cells, which are derived from pheochromocytoma. The effects of these compounds on DNA damage and cell viability were investigated in this study.

Methanol, a solvent commonly used in cellular experiments, was found to cause significant DNA damage as measured by the comet assay. Hydrogen peroxide, on the other hand, caused a dose-dependent increase in DNA damage, with higher concentrations leading to more pronounced effects. Molecular oxygen, while not as potent as hydrogen peroxide, also contributed to DNA damage, although to a lesser extent.

The effects of these compounds on cell viability were also assessed. Methanol was found to have a moderate cytotoxic effect, whereas hydrogen peroxide and molecular oxygen caused significant cell death at higher concentrations. The results suggest that these compounds can induce DNA damage and cell death in PC12 cells, with molecular oxygen and hydrogen peroxide being the most effective.

In conclusion, the study highlights the potential cytotoxicity of molecular oxygen and hydrogen peroxide, which should be considered in the design of experiments involving these compounds. Future work could focus on understanding the mechanisms by which these compounds induce DNA damage and cell death, as well as exploring strategies to mitigate their effects.

[DOI: 10.22102/22.1.1] [Downloaded from sjku.muk.ac.ir on 2022-01-28]
ساعت قطر داده شده سپس محیط داخلی چاهک‌ها خالی گرد و 100 میکرو لیتر DMSO در نهایت میزان جذب نوری هر چاهک با استفاده از دستگاه ELISA Reader 50 و توان شمعی و طول موج رفتن 300 تا 500 میکرو حساسیت اندازه‌گیری گردید.

اندازه‌گیری میزان پراکسیداسیون لپیدی به وسیله استرس اکسیداتیو باعث افزایش پراکسیداسیون لپیدی اسیدهای جرب غیر اشاعه می‌گردد و بر اثر حمله رادیکالهای آزاد به لپید، یکی از موادی که تولید می‌شود، مولث می‌شود. مولث ماژور در آلدید (MDA) است. جهت اندازه‌گیری میزان پراکسیداسیون لپیدی، مولث ماژور در آلدید به عنوان شاخص از پراکسیداسیون لپیدی بررسی می‌شود.

در این روش با ارزیابی ماده و کشت تیوبایوتینیک اسید می‌توان آریس دادن شده به لپیدها و اندامه (TBARS) گردید. در این نظریه، باعث افزایش میزان مولث ماژور در آلدید به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

کشت داده می‌شود و بعد از تصمیم به کپسول نتیجه‌گیری می‌شود که در معرض عفونت و میزان تعداد سلول‌ها با کپسول هر 25 cm² میزان تعیین سولوله به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۵۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۴۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۳۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۲۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۱۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۱۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۱ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۵۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۴۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۳۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۲۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۱۰۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۱۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.

با استفاده از آزمایشات ۰ سلول با کپسول می‌توان یافته شده که در معرض عفونت و میزان تعیین سولول به کمک فلمسک و رسانده به 70% کپسول با آلوپروپروپونیات ویتانژ و حمایت می‌کند.
HU (DTNB)DTNB(TAP)FRAP (Ferric Reducing Ability of Plasma) (TPTZ)PH.

MTT

PC12

mean ± SEM 111.47 ± 4.23, 116.56 ± 3.82, 115.88 ± 3.57, 113.92 ± 3.24, 112.94 ± 3.18, 112.21 ± 2.95, 110.97 ± 2.82. The results are expressed as mean ± standard error of the mean (SEM). The statistical analysis was performed using one-way ANOVA followed by Tukey’s post-hoc test.** P < 0.01, *** P < 0.001.

FIGURE 1: MTT assay results showing cell viability of PC12 cells treated with different concentrations of glucose. The data are expressed as mean ± standard error of the mean (SEM). The statistical analysis was performed using one-way ANOVA followed by Tukey’s post-hoc test. ** P < 0.01, *** P < 0.001.


اثر آلیپوربرنول بر پراکسیداسیون لیپیدی:

غلظت بالا گلکوز به مدت 24 ساعت در مقایسه با گروه کنترل باعث افزایش پراکسیداسیون لیپیدی در سلول های PC12 شد. برانکویاسیون با آلیپوربرنول در مقایسه با گروه گلکوز روند افزایش چشمگیری از این افزایش میزان پراکسیداسیون لیپیدی جلوگیری نماید (نمودار 2).

نمودار 2: اثرات آلیپوربرنول بر افزایش پراکسیداسیون لیپیدی ناشی از غلظت بالا گلکوز. میزان پراکسیداسیون لیپیدی بوسیله برانکویاسیون به میزان 

- ***: P < 0.001
- ##: P < 0.01
با گروه گلکوز مقایسه شد.

اثر آلیپوربرنول بر گروه های تیول:

همانطور که در نمودار 3 نشان داده شده است درمان با غلظت بالا گلکوز به مدت 24 ساعت در مقایسه با گروه کنترل باعث کاهش میزان گروه های تیول در سلول های PC12 شد. برانکویاسیون با آلیپوربرنول در مقایسه با گروه گلکوز روند افزایش چشمگیری کند و میزان گروه های تیول را افزایش دهد.

نمودار 3: اثرات آلیپوربرنول بر کاهش گروه های تیول ناشی از غلظت بالا گلکوز. میزان گروه های تیول بوسیله روش رنگ اندازه گیری شد. نتایج بصورت 

- ***: P < 0.001
- ##: P < 0.01
با گروه گلکوز مقایسه شد.

پژوهش علمی دانشگاه علوم پزشکی کرمانستان / دهه پیست و دوم / فهرست و ادبیات

1895
اثر آلیپورونیل بر طرفیت آنتی اکسیدانی تام:
در گروه گلکوز در مقایسه با گروه کنترل، طرفیت آنتی اکسیدانی تام به میزان معنی‌داری کاهش یافت. همانطور که در نمودار 4 نشان داده شده است ضرکوزریون با آلیپورونیل در مقایسه با گروه گلکوز به میزان معنی‌داری باعث افزایش طرفیت آنتی
اکسیدانی تام شده است.

نمودار 4: اثرات آلیپورونیل بر کاهش طرفیت آنتی اکسیدانی تام ناشی از غلظت بالای گلکوز. نتایج به صورت
P < 0.01 0.01 < P 0.05

بحث
نتایج ما نشان داد که آلیپورونیل اثرات نوریپروتکسیو بر استرس اکسیدانی و آپورپتوس ناشی از غلظت بالای گلکوز در سلول‌های PC12 دارد. مطالعات نشان دادند که استرس اکسیدانی ناشی از گلکوز، نقش اصلی در پاتوژن نوروبیا
دیبای دارد. گرچه در پیشنهاد نوروبیا دیبای فاکتورهای
متعددی نقش دارند ولي تاکنون مکانیسم دقیق پاتولوژیک
این بیماری شناسایی نشد. این نتایج در این مورد
توثیف شده است: از جمله اینکه هیپرگلیکمی مسیر‌های
پیشرفته گلیکوزیل‌های C4، محصولات نهایی
پیشرفته گلیکوزیل‌های (AGEs)، استرس اکسیدانی،
تیریدکس اکسید و انتهای را فعال می‌کند. نتایج تحقیقات
نشان می‌دهد که استرس اکسیدانی در همه این مسیرها نقش
دارد (21 و 22).

آلیپورونیل مهار کننده گوناگون اکسیداز می‌باشد و به عنوان
درمان استاندارد بیماری نقرس و شرایط مرتبط با
هرامپریسی استفاده شده است. گوناگون اکسیداز یک
آنزیم سیستولی است که سوخت‌های زائدی از جمله
بازههای بورین و پرپیدین‌های اکسیدی می‌کند. در شرایط
نرم‌ال، این آنزیم در فرم دهیدروژن قرار دارد. در شرایط
پاتولوژیک، فرم دهیدروژن آنزیم محمل اکسیداز‌ها و
پروتئین قرار گرفته و به فرم عامل آنزیم تبدیل می‌شود.
آنژیم گرانیتوس اکسیداز بر گرانیتو و هیپرگلیکمی اثر کرده و

دولاب علمی دانشگاه علوم پزشکی کرکستان / جروم بیست و دوم / خرداد و اردیبهشت 1398
آنها را به اسید اوریک بتنیمی که کد و در طی این واکنش بروز نیاز چهارکسیابان تولید می‌شود. این دارو با مهار اصلی اسید اوریک را کاهش می‌دهد. همگام با آن، گرانتیون و هیبریدهای جدیدی که محلول نشده، افزایش می‌یابند (23). نتایج نشان داده‌های آزمایشگاهی با آلودگی مزایایی که توانایی می‌شود تأثیر مثبت داشته باشد. بنابراین، آلودگی مزیات مزایایی که توانایی آلودگی مزیات مزایایی که توانایی
References

