[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Journal Citation Index

 

Citation Indices from GS

AllSince 2019
Citations90545467
h-index3825
i10-index237140

 

..
Central Library of Kurdistan University of Medical Sciences
AWT IMAGE
..
Vice-Chancellery for Research and Technology
AWT IMAGE
..
SCImago Journal & Country Rank
:: Volume 28, Issue 1 (Scientific Journal of Kurdistan University of Medical Sciences 2023) ::
SJKU 2023, 28(1): 135-155 Back to browse issues page
The Optimization of Electrocoagulation Process Efficiency in the Removal of Amoxicillin Antibiotic and COD from Aqueous Solutions and Hospital Wastewater under Optimal Conditions: A Case Study of Alimoradian Hospital, Nahavand
Gholamreza Karim Mehrabankhahi1 , Mostafa Leili 2, Reza Shokooni3 , Alireza Rahmani3 , Ghasem Azarian4 , Nasrin Shirmohammadi Khorram4 , Mahmood Razavi4
1- MSc Student, Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
2- Hamadan University of Medical Sciences , mostafa.leili@gmail.com
3- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
4- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
Abstract:   (786 Views)
Background and Aim: Amoxicillin antibiotic is one of the antibiotics which is used in medicine and veterinary medicine to treat bacterial infectious diseases. In this study, a special electrochemical cell design was used as it could integrate the process units and the operation units to reduce COD and amoxicillin antibiotic residues from the wastewater of Alimoradian Hospital. Also, to optimize the operational parameters, the central composite design of response surface methodology (RSM) was used.
Materials and Methods: This experimental study was conducted in two parts. In the first stage, synthetic wastewater was prepared from Amoxicillin antibiotics to investigate the effect of various parameters such as reaction time, initial antibiotic concentration, current density, and pH on the efficiency of the method. In the second stage, the efficiency of the method in removing the antibiotic and reducing COD from the actual wastewater of Alimoradian hospital was evaluated.
Results: Using the RSM, the optimal conditions of the laboratory findings were determined as follows: reaction time = 30 min, pH = 7.5, current density = 2.31 mA/cm2, and initial concentration of amoxicillin = 54.66 mg/L. Under these conditions, the removal amount of amoxicillin was 90.56%. The results also showed that under optimal conditions, the removal rate of COD and TOC from synthetic wastewater is 65.5% and 44.5%, respectively, and in the effluent of Alimoradian hospital is 47.7% and 38%, respectively. The reason for this difference is probably due to the presence of some resistant compounds in the real wastewater.
Conclusion: This experimental study showed that the combined electrocoagulation process can be a more effective method in removing the amoxicillin antibiotic and COD from aqueous solutions and hospital wastewater.

 
Keywords: Electrocoagulation process, Optimization, Alimoradian hospital, RSM-CCD
Full-Text [PDF 757 kb]   (267 Downloads)    
Type of Study: Original Research | Subject: Environmental Health Engineering
Received: 2022/03/5 | Accepted: 2022/07/19 | Published: 2023/03/15
References
1. Githinji LJ, Musey MK, Ankumah RO. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut. 2011;219(1):191-201 [DOI:10.1007/s11270-010-0697-1]
2. Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices-a review. J Environ Manage. 2011;1;92(10):2304-47. [DOI:10.1016/j.jenvman.2011.05.023] [PMID]
3. Dimitrakopoulou D, Rethemiotaki I, Frontistis Z, Xekoukoulotakis NP, Venieri D, Mantzavinos D. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J Environ Manage. 2012;98:168-74. [DOI:10.1016/j.jenvman.2012.01.010] [PMID]
4. Tsakona M, Anagnostopoulou E, Gidarakos E. Hospital waste management and toxicity evaluation: a case study. J Waste Manag. 2007;27(7):912-20. [DOI:10.1016/j.wasman.2006.04.019] [PMID]
5. Ghafouri Safa S, Mirzaali A, Ghorbanpour R, Kamali H, Gholizadeh A. Performance evaluation of wastewater treatment facilities in selected hospitals of North Khorasan in 2012-2013. Journal of North Khorasan University of Medical Sciences. 2014;6(2):371-9. [DOI:10.29252/jnkums.6.2.371]
6. Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli R. Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater. 2010;179(1-3):1042-8. [DOI:10.1016/j.jhazmat.2010.03.110] [PMID]
7. Ferrari B, Mons R, Vollat B, Fraysse B, Paxēaus N, Giudice RL, et el. Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?. Environ Toxicol Chem 2004;23(5):1344-54. [DOI:10.1897/03-246] [PMID]
8. Norabadi E, Panahi AH, Ghanbari R, Meshkinian A, Kamani H, Ashrafi SD. Optimizing the parameters of amoxicillin removal in a photocatalysis/ozonation process using Box-Behnken response surface methodology. Desalin. Water Treat. 2020;192(192):234-40. [DOI:10.5004/dwt.2020.25728]
9. Carabineiro SA, Thavorn-Amornsri T, Pereira MF, Figueiredo JL. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 2011;45(15):4583-91. [DOI:10.1016/j.watres.2011.06.008] [PMID]
10. Lin AY, Lin CF, Chiou JM, Hong PA. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. J Hazard Mater. 2009;171(1-3):452-8. [DOI:10.1016/j.jhazmat.2009.06.031] [PMID]
11. Rozas O, Contreras D, Mondaca MA, Pérez-Moya M, Mansilla HD. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J Hazard Mater. 2010;177(1-3):1025-30. [DOI:10.1016/j.jhazmat.2010.01.023] [PMID]
12. Kim TH, Kim SD, Kim HY, Lim SJ, Lee M, Yu S. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV. J Hazard Mater. 2012;227:237-42. [DOI:10.1016/j.jhazmat.2012.05.038] [PMID]
13. Koyuncu I, Arikan OA, Wiesner MR, Rice C. Removal of hormones and antibiotics by nanofiltration membranes. J Membr Sci. 2008;309(1-2):94-101. [DOI:10.1016/j.memsci.2007.10.010]
14. Choi KJ, Kim SG, Kim SH. Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater. 2008;151(1):38-43. [DOI:10.1016/j.jhazmat.2007.05.059] [PMID]
15. Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol. 2017;224:1-2 [DOI:10.1016/j.biortech.2016.11.042] [PMID]
16. Bitton G. Wastewater microbiology. 3rd ed. John Wiley & Sons; 2005: 125-236. [DOI:10.1002/0471717967] []
17. Pell M, Wörman A. Biological wastewater treatment systems. Ecosystem Ecology. 1st ed. The Netherlands: Elsevier, 2008; 26 - 441. [DOI:10.1016/B978-008045405-4.00317-7]
18. Rind FM, Laghari MG, Memon AH, Khuhawar MY, Maheshwari ML. Spectrophotometric determination of ceftriaxone using 4-dimethylaminobenzaldehyde. Pak J Anal Environ. 2008;9(1):7.
19. Shen S, Ren J, Chen J, Lu X, Deng C, Jiang X. Development of magnetic multiwalled carbon nanotubes combined with near-infrared radiation-assisted desorption for the determination of tissue distribution of doxorubicin liposome injects in rats. J Chromatogr A. 2011;1218(29):4619-26. [DOI:10.1016/j.chroma.2011.05.060] [PMID]
20. Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113. J Hazard Mater. 2011;186(1):891-901. [DOI:10.1016/j.jhazmat.2010.11.091] [PMID]
21. Wang H, Zheng X-W, Su J-Q, Tian Y, Xiong X-J, Zheng T-L. Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard. Mater. 2009;171(1-3):654-9. [DOI:10.1016/j.jhazmat.2009.06.050] [PMID]
22. Adhoum N, Monser L, Bellakhal N, Belgaied J-E. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr (VI) by electrocoagulation. J. Hazard. Mater. 2004;112(3):207-13. [DOI:10.1016/j.jhazmat.2004.04.018] [PMID]
23. Feng J-w, Sun Y-b, Zheng Z, Zhang J-b, Li S, Tian Y-c. Treatment of tannery wastewater by electrocoagulation. J Environ Sci. 2007;19(12):1409-15. [DOI:10.1016/S1001-0742(07)60230-7] [PMID]
24. Hanafi F, Assobhei O, Mountadar M. Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation. J Hazard Mater. 2010;174(1-3):807-12. [DOI:10.1016/j.jhazmat.2009.09.124] [PMID]
25. Merzouk B, Gourich B, Sekki A, Madani K, Vial C, Barkaoui M. Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. J Chem Eng. 2009;149(1-3):207-14. [DOI:10.1016/j.cej.2008.10.018]
26. Ilhan F, Kurt U, Apaydin O, Gonullu MT. Treatment of leachate by electrocoagulation using aluminum and iron electrodes. J Hazard Mater. 2008;154(1-3):381-9. [DOI:10.1016/j.jhazmat.2007.10.035] [PMID]
27. Gomes JA, Daida P, Kesmez M, Weir M, Moreno H, Parga JR, et al. Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. J Hazard Mater. 2007;139(2):220-31. [DOI:10.1016/j.jhazmat.2005.11.108] [PMID]
28. Murugananthan M, Raju GB, Prabhakar S. Removal of sulfide, sulfate and sulfite ions by electro coagulation. J Hazard Mater. 2004;109(1-3):37-44. [DOI:10.1016/j.jhazmat.2003.12.009] [PMID]
29. Yao X, Deng S, Wu R, Hong S, Wang B, Huang J, et al. Highly efficient removal of hexavalent chromium from electroplating wastewater using aminated wheat straw. RSC advances. 2016;6(11):8797-805. [DOI:10.1039/C5RA24508G]
30. Lenth RV. Response-surface methods in R, using rsm. J Stat Softw. 2009;32(7):1-17. [DOI:10.18637/jss.v032.i07]
31. Bahobail A, Gad El-Rab SMF, Amin GA. American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for the examination of water and wastewater. 21 st ed. Washington, DC, USA, 2005.
32. Babu BR MK, Venkatesan P. Removal of pesticides from wastewater by electrochemical methods-A comparative approach. Sustain. Environ. Res. 2011;12(16):3-12.
33. Su-Myeong Hong CM, Hye-young Kwon, Taek-kyum Kima, and Doo-ho Kim. Aqueous Degradation of Imidacloprid and Fenothiocarb using Contact Glow Discharge Electrolysis: Degradation Behavior and Kinetics. Food Sci Biotechnol. 2013;22:1773-8. [DOI:10.1007/s10068-013-0279-2]
34. Garrett P. Electrochemical degradation of some pesticides in agricultural wastewater by using modified electrode. Int J Agric Res. 2013;61:1-5.
35. Abdel-Gawad SA BA, Omran KA, Mokhtar MM. Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes. Int J Electrochem Sci. 2012;7:6654-65. [DOI:10.1016/S1452-3981(23)15737-3]
36. Abdel-Gawad SA, Omran KA, Mokhatar MM, Baraka AM. Electrochemical degradation of some pesticides in agricultural wastewater by using modified electrode. J Am Sci. 2011;7(7):44-50.
37. Rahmani AR, Goodini K, Nematollahi D, Azarian G. Electrochemical oxidation of activated sludge by using direct and indirect anodic oxidation. Desalin Water Treat. 2015;56:2234-45. [DOI:10.1080/19443994.2014.958761]
38. Godini K, Azarian Gh, Rahmani AR, Zolghadrnasab H. Treatment of waste sludge: a comparison between anodic oxidation and electro-Fenton processes. J Res Health Sci. 2013;13:188-93.
39. Turabik M, Gözmen B, Oturan MA. Efficient removal of insecticide imidacloprid from water by electrochemical advanced oxidation processes. Environ Sci Pollut Res. 2014;21:8387-97. [DOI:10.1007/s11356-014-2788-9] [PMID]
40. Ridruejo C, Salazar C, Cabot PL, Centellas F, Brillas E, Sirés I. Electrochemical oxidation of anesthetic tetracaine in aqueous medium. Influence of the anode and matrix composition. J Chem. Eng. 2017;326:811-9 [DOI:10.1016/j.cej.2017.04.139]
41. Githinji LJ, Musey MK, Ankumah RO. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut. 2011;219(1):191-201 [DOI:10.1007/s11270-010-0697-1]
42. Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices-a review. J Environ Manage. 2011;1;92(10):2304-47. [DOI:10.1016/j.jenvman.2011.05.023] [PMID]
43. Dimitrakopoulou D, Rethemiotaki I, Frontistis Z, Xekoukoulotakis NP, Venieri D, Mantzavinos D. Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J Environ Manage. 2012;98:168-74. [DOI:10.1016/j.jenvman.2012.01.010] [PMID]
44. Tsakona M, Anagnostopoulou E, Gidarakos E. Hospital waste management and toxicity evaluation: a case study. J Waste Manag. 2007;27(7):912-20. [DOI:10.1016/j.wasman.2006.04.019] [PMID]
45. Ghafouri Safa S, Mirzaali A, Ghorbanpour R, Kamali H, Gholizadeh A. Performance evaluation of wastewater treatment facilities in selected hospitals of North Khorasan in 2012-2013. Journal of North Khorasan University of Medical Sciences. 2014;6(2):371-9. [DOI:10.29252/jnkums.6.2.371]
46. Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli R. Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater. 2010;179(1-3):1042-8. [DOI:10.1016/j.jhazmat.2010.03.110] [PMID]
47. Ferrari B, Mons R, Vollat B, Fraysse B, Paxēaus N, Giudice RL, et el. Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?. Environ Toxicol Chem 2004;23(5):1344-54. [DOI:10.1897/03-246] [PMID]
48. Norabadi E, Panahi AH, Ghanbari R, Meshkinian A, Kamani H, Ashrafi SD. Optimizing the parameters of amoxicillin removal in a photocatalysis/ozonation process using Box-Behnken response surface methodology. Desalin. Water Treat. 2020;192(192):234-40. [DOI:10.5004/dwt.2020.25728]
49. Carabineiro SA, Thavorn-Amornsri T, Pereira MF, Figueiredo JL. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 2011;45(15):4583-91. [DOI:10.1016/j.watres.2011.06.008] [PMID]
50. Lin AY, Lin CF, Chiou JM, Hong PA. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. J Hazard Mater. 2009;171(1-3):452-8. [DOI:10.1016/j.jhazmat.2009.06.031] [PMID]
51. Rozas O, Contreras D, Mondaca MA, Pérez-Moya M, Mansilla HD. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J Hazard Mater. 2010;177(1-3):1025-30. [DOI:10.1016/j.jhazmat.2010.01.023] [PMID]
52. Kim TH, Kim SD, Kim HY, Lim SJ, Lee M, Yu S. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV. J Hazard Mater. 2012;227:237-42. [DOI:10.1016/j.jhazmat.2012.05.038] [PMID]
53. Koyuncu I, Arikan OA, Wiesner MR, Rice C. Removal of hormones and antibiotics by nanofiltration membranes. J Membr Sci. 2008;309(1-2):94-101. [DOI:10.1016/j.memsci.2007.10.010]
54. Choi KJ, Kim SG, Kim SH. Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater. 2008;151(1):38-43. [DOI:10.1016/j.jhazmat.2007.05.059] [PMID]
55. Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol. 2017;224:1-2 [DOI:10.1016/j.biortech.2016.11.042] [PMID]
56. Bitton G. Wastewater microbiology. 3rd ed. John Wiley & Sons; 2005: 125-236. [DOI:10.1002/0471717967] []
57. Pell M, Wörman A. Biological wastewater treatment systems. Ecosystem Ecology. 1st ed. The Netherlands: Elsevier, 2008; 26 - 441. [DOI:10.1016/B978-008045405-4.00317-7]
58. Rind FM, Laghari MG, Memon AH, Khuhawar MY, Maheshwari ML. Spectrophotometric determination of ceftriaxone using 4-dimethylaminobenzaldehyde. Pak J Anal Environ. 2008;9(1):7.
59. Shen S, Ren J, Chen J, Lu X, Deng C, Jiang X. Development of magnetic multiwalled carbon nanotubes combined with near-infrared radiation-assisted desorption for the determination of tissue distribution of doxorubicin liposome injects in rats. J Chromatogr A. 2011;1218(29):4619-26. [DOI:10.1016/j.chroma.2011.05.060] [PMID]
60. Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113. J Hazard Mater. 2011;186(1):891-901. [DOI:10.1016/j.jhazmat.2010.11.091] [PMID]
61. Wang H, Zheng X-W, Su J-Q, Tian Y, Xiong X-J, Zheng T-L. Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard. Mater. 2009;171(1-3):654-9. [DOI:10.1016/j.jhazmat.2009.06.050] [PMID]
62. Adhoum N, Monser L, Bellakhal N, Belgaied J-E. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr (VI) by electrocoagulation. J. Hazard. Mater. 2004;112(3):207-13. [DOI:10.1016/j.jhazmat.2004.04.018] [PMID]
63. Feng J-w, Sun Y-b, Zheng Z, Zhang J-b, Li S, Tian Y-c. Treatment of tannery wastewater by electrocoagulation. J Environ Sci. 2007;19(12):1409-15. [DOI:10.1016/S1001-0742(07)60230-7] [PMID]
64. Hanafi F, Assobhei O, Mountadar M. Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation. J Hazard Mater. 2010;174(1-3):807-12. [DOI:10.1016/j.jhazmat.2009.09.124] [PMID]
65. Merzouk B, Gourich B, Sekki A, Madani K, Vial C, Barkaoui M. Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. J Chem Eng. 2009;149(1-3):207-14. [DOI:10.1016/j.cej.2008.10.018]
66. Ilhan F, Kurt U, Apaydin O, Gonullu MT. Treatment of leachate by electrocoagulation using aluminum and iron electrodes. J Hazard Mater. 2008;154(1-3):381-9. [DOI:10.1016/j.jhazmat.2007.10.035] [PMID]
67. Gomes JA, Daida P, Kesmez M, Weir M, Moreno H, Parga JR, et al. Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. J Hazard Mater. 2007;139(2):220-31. [DOI:10.1016/j.jhazmat.2005.11.108] [PMID]
68. Murugananthan M, Raju GB, Prabhakar S. Removal of sulfide, sulfate and sulfite ions by electro coagulation. J Hazard Mater. 2004;109(1-3):37-44. [DOI:10.1016/j.jhazmat.2003.12.009] [PMID]
69. Yao X, Deng S, Wu R, Hong S, Wang B, Huang J, et al. Highly efficient removal of hexavalent chromium from electroplating wastewater using aminated wheat straw. RSC advances. 2016;6(11):8797-805. [DOI:10.1039/C5RA24508G]
70. Lenth RV. Response-surface methods in R, using rsm. J Stat Softw. 2009;32(7):1-17. [DOI:10.18637/jss.v032.i07]
71. Bahobail A, Gad El-Rab SMF, Amin GA. American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for the examination of water and wastewater. 21 st ed. Washington, DC, USA, 2005.
72. Babu BR MK, Venkatesan P. Removal of pesticides from wastewater by electrochemical methods-A comparative approach. Sustain. Environ. Res. 2011;12(16):3-12.
73. Su-Myeong Hong CM, Hye-young Kwon, Taek-kyum Kima, and Doo-ho Kim. Aqueous Degradation of Imidacloprid and Fenothiocarb using Contact Glow Discharge Electrolysis: Degradation Behavior and Kinetics. Food Sci Biotechnol. 2013;22:1773-8. [DOI:10.1007/s10068-013-0279-2]
74. Garrett P. Electrochemical degradation of some pesticides in agricultural wastewater by using modified electrode. Int J Agric Res. 2013;61:1-5.
75. Abdel-Gawad SA BA, Omran KA, Mokhtar MM. Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes. Int J Electrochem Sci. 2012;7:6654-65. [DOI:10.1016/S1452-3981(23)15737-3]
76. Abdel-Gawad SA, Omran KA, Mokhatar MM, Baraka AM. Electrochemical degradation of some pesticides in agricultural wastewater by using modified electrode. J Am Sci. 2011;7(7):44-50.
77. Rahmani AR, Goodini K, Nematollahi D, Azarian G. Electrochemical oxidation of activated sludge by using direct and indirect anodic oxidation. Desalin Water Treat. 2015;56:2234-45. [DOI:10.1080/19443994.2014.958761]
78. Godini K, Azarian Gh, Rahmani AR, Zolghadrnasab H. Treatment of waste sludge: a comparison between anodic oxidation and electro-Fenton processes. J Res Health Sci. 2013;13:188-93.
79. Turabik M, Gözmen B, Oturan MA. Efficient removal of insecticide imidacloprid from water by electrochemical advanced oxidation processes. Environ Sci Pollut Res. 2014;21:8387-97. [DOI:10.1007/s11356-014-2788-9] [PMID]
80. Ridruejo C, Salazar C, Cabot PL, Centellas F, Brillas E, Sirés I. Electrochemical oxidation of anesthetic tetracaine in aqueous medium. Influence of the anode and matrix composition. J Chem. Eng. 2017;326:811-9 [DOI:10.1016/j.cej.2017.04.139]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.UMSHA.REC.1399.693



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karim Mehrabankhahi G, Leili M, Shokooni R, Rahmani A, Azarian G, Shirmohammadi Khorram N et al . The Optimization of Electrocoagulation Process Efficiency in the Removal of Amoxicillin Antibiotic and COD from Aqueous Solutions and Hospital Wastewater under Optimal Conditions: A Case Study of Alimoradian Hospital, Nahavand. SJKU 2023; 28 (1) :135-155
URL: http://sjku.muk.ac.ir/article-1-7268-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 1 (Scientific Journal of Kurdistan University of Medical Sciences 2023) Back to browse issues page
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
مجله علمی دانشگاه علوم پزشکی کردستان Scientific Journal of Kurdistan University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4645