

Isolation, morphological characterization and host range determination of Iranian bacteriophages against *Salmonella* reference collection

Panahi P., BS¹, Mojtabaei A., PhD², Khan Mirzaei M.A., PhD³, Shenagari M., PhD⁴, Atrkar Roushan Z., PhD⁵

1. MSc. Student, Microbiology Department, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
2. Associate Professor, Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran (Corresponding Author) Tel:+98-13-3360884, alimojtahedi@yahoo.com
3. Microbiology and Immunology Department, Duff Medical Building McGill University, Montreal, Canada.
4. Assistant Professor, Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
5. Assistant Professor, Biostatistics Department, Faculty of Medicine, Guilan University of Medical Sciences, Rasht- Iran

ABSTRACT

Background and Aim: *Salmonella* spp. is important in medicine. Most related infections are self-limited. Antibiotics are used for high risk patients such as children, old individuals and immune-compromised patients. Overuse of antibiotics has led to increased emergence of multi-drug resistant bacteria which are life-threatening. Phage therapy is an alternative method to reduce antibiotic use.

Materials and Methods: Waste water samples were collected from sewage system of Rasht City twice a month. Prepared suspensions of *Salmonella* reference collection A (SARA) number 1, 6 (*S. typhimurium*) and 46, 48, 51 (*S. paratyphi B*) and double LB broth were mixed with filtrated waste water. After centrifugation and filtration, serial dilutions were prepared and phages were isolated. Morphologic characteristics were determined using TEM (Transmission electron microscopy). Finally, to assess the spectrum effect of the bacteriophages, we determined host range against 19 SARA strains.

Results: Clear plaque formation on double layer LB agar indicated lysis of the test strains by isolated phages. The results of host range showed that some of the phages were able to lyse a number of other bacteria of SARA collection. Imaging with TEM indicated that the isolated phages against SARA collection belonged to *Siphoviridae* and *Podoviridae* families.

Conclusion: This is the first report of phage isolation against *Salmonella* reference collection in Iran. SARA no. 51 (*S. paratyphi B*) was lysed by *S. typhimurium* phage. It means that the isolated phage may lyse *S. typhi*, which is an important human pathogen.

Keywords: *Salmonella* reference collection, Bacteriophage, TEM, Morphology.

Received: Oct 31, 2016 **Accepted:** Jan 10, 2017

جدازی و تعیین خصوصیات مورفولوژیکی و دامنه میزبانی باکتریوفاژهای ایرانی علیه جدایهای کلکسیون رفرانس سالمونلا

پگاه پناهی^۱، علی مجتبی^۲، محمد علی خان میرزا بی^۳، محمد شناگری^۴، زهرا عطر کار روش^۵

۱. دانشجوی کارشناسی ارشد میکروب شناسی پزشکی، گروه میکروب شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی گیلان، رشت - ایران
۲. دانشیار، مرکز تحقیقات سلولی و مولکولی، دانشکده پزشکی، دانشگاه علوم پزشکی گیلان، رشت - ایران (مؤلف مسئول)، تلفن ثابت: ۰۳۳۶۰۸۴۰، E-mail: alimojtahedi@yahoo.com
۳. دانشجوی فرقه دکتر، دپارتمان میکروبیولوژی و ایمنولوژی، ساختمان پزشکی Duff، دانشگاه مک گیل، مونترال، کانادا
۴. استادیار، مرکز تحقیقات سلولی و مولکولی، دانشکده پزشکی، دانشگاه علوم پزشکی گیلان، رشت - ایران
۵. استادیار، گروه آمار حیاتی، دانشکده پزشکی، دانشگاه علوم پزشکی گیلان، رشت - ایران

چکیده

زمینه و هدف: باکتری سالمونلا در پزشکی حائز اهمیت می‌باشد. اغلب عفونت‌های مرتبط با این باکتری‌ها خود محدود شونده می‌باشند. آنتی بیوتیک‌ها برای بیماران در معرض خطر مانند کودکان، افراد مسن و بیماران دارای ضعف ایمنی تجویز می‌شود. مصرف بیش از حد آنتی بیوتیک‌ها منجر به افزایش باکتری‌های دارای مقاومت چند دارویی شده است که تهدید کننده حیات می‌باشد. فاژ تراپی یکی از راه‌های جایگزین در جهت کاهش آنتی بیوتیک است.

روش بررسی: از فاضلاب رشت دوبار در ماه نونه گیری شد. سوپانسیون باکتری‌های شماره ۱، ۶، ۴۶، ۴۸ و ۵۱ کلکسیون SARA A و دبل LB برات (Double LB) با فاضلاب فیلتر شده مخلوط شدند. پس از سانتریفیوژ و فیلتراسیون، رقت‌های سریالی تهیه و باکتریوفاژ جداسازی شد. ویژگی‌های مورفولوژیکی آنها توسط میکروسکوپ الکترونی TEM تعیین گردید. در نهایت دامنه میزبانی علیه ۱۹ سویه انسانی کلکسیون انجام شد تا طیف اثر باکتریوفاژها تعیین شود.

یافته‌ها: تشکیل پلاک شفاف روی محیط LB آگار دو لایه نشان دهنده لیز سویه‌های تست شده توسط باکتریوفاژهای جداسازی شده بود. نتایج دامنه میزبانی نشان داد که بعضی از این فاژها قادر به لیز تعدادی از سایر باکتری‌های کلکسیون A SARA بودند. عکس‌برداری توسط TEM نشان داد که فاژهای ایزوله شده علیه کلکسیون A SARA، متعلق به خانواده *Siphoviridae* و *Podoviridae* بودند.

نتیجه‌گیری: این مطالعه اولین گزارش جداسازی باکتریوفاژ علیه سویه‌های رفرنس سالمونلا در ایران است. سویه شماره ۵۱ سالمونلا پاراتایفی (B) توسط باکتریوفاژ سالمونلا تایفی موریوم لیز شد که بدین معنا می‌باشد که ممکن است سالمونلا تایفی که یک پاتوژن حائز اهمیت انسانی است را بتواند لیز کند.

کلید واژه‌ها: TEM، سویه استاندارد سالمونلا، باکتریوفاژ، مورفولوژی وصول مقاله: ۹۵/۸/۹ اصلاحیه نهایی: ۹۵/۱۰/۱۴ پذیرش: ۹۵/۱۰/۲۰

مقدمه

سالمونلا از شایع‌ترین باکتری‌های منتقل شونده از حیوانات به انسان‌ها بوده و از مهمترین عوامل مرتبط با مسمومیت غذایی و مشکلات بهداشتی در سراسر جهان است. بر اساس اعلام CDC، سالیانه ۴۰ هزار مورد سالمونلوزیس در آمریکا گزارش می‌شود. به علاوه سالمونلوزیس غیر تیفوئیدی دومین عامل شایع مسمومیت‌های زئنونز در اروپا شناسایی شده است (۱-۴) سرووار تایفی موریوم دومین سرووار مهم عامل سالمونلوزیس بوده است و مقاومت به آنتی‌بیوتیک‌های مهم مثل سپیروفلوكسازین در این سرووار بالا است (۵ و ۳). در کشورهای در حال توسعه از جمله ایران، عفونت‌های سالمونلایی همچنان از اهمیت ویژه‌ای برخوردار است، به طوری که سالیانه درصد قابل توجهی از عفونت‌های انسانی به خصوص اطفال و افراد مسن را به خود اختصاص می‌دهد. لذا ارزیابی الگوی اثرات آنتی‌بیوتیکی رایج و مقایسه آن با دیگر داروهای مناسب به عنوان جایگزین در درمان و کنترل این عفونت دارای اهمیت می‌باشد (۶).

اکثر عفونت‌های سالمونلا خود محدود شونده هستند و از آنتی‌بیوتیک فقط در درمان بیماران پرخطر از قبیل بیماران زیر سه ماه، بیماران دارای ضعف سیستم ایمنی، سوء تغذیه و بدخیمی و نیز افراد مبتلا به عفونت‌های خارج روده‌ای استفاده می‌شود (۷). سالمونلا تایفی موریوم به عنوان یکی از سرووارهای غیر تیفوئیدی نسبتاً شایع و عامل ایجاد کننده عفونت‌های روده‌ای یا خارج روده‌ای در انسان، دام و پرندگان است. در افراد سالم عفونت‌های ناشی از این باکتری اغلب به شکل عفونت‌های روده‌ای با علائمی از قبیل اسهال یا اسهال همراهیک روی می‌دهد. سالمونلا پارا تایفی نیز باعث ایجاد تب روده‌ای در انسان می‌شود. مصرف بیش از حد آنتی‌بیوتیک‌ها در انسان و حیوانات منجر به افزایش مقاومت آنتی‌بیوتیکی در جهان شده است. بدین ترتیب حیوانات تولید کننده مواد غذایی، یک منبع مقاومت آنتی‌بیوتیکی شده و طی ذبح حیوانات یا فرآوری،

گوشت می‌تواند با مدفع آلووده شود. ۹۰-۹۵ درصد عفونت‌های سالمونلا ناشی از مصرف غذای آلووده مثل گوشت، مرغ، تخم مرغ، گوشت خوک، شیر و غذای دریایی می‌باشد (۸).

برای درمان عفونت‌های باکتریایی مقاوم به آنتی‌بیوتیک باید به دنبال روش‌های جایگزین بود. یکی از روش‌های جایگزین، استفاده از باکتریوفاژها است. از این مقوله تحت عنوان فاژ درمانی یاد می‌شود. فاژ درمانی روشی است که در آن از ویروس‌های باکتریایی که فاقد بیماریزایی برای انسان می‌باشد می‌توان استفاده نمود. فاژ درمانی روشی ارزان‌تر و سریع‌تر نسبت به تولید نسل جدید آنتی‌بیوتیک است. باکتریوفاژها ویروس‌هایی هستند که قادر به لیز باکتری‌ها می‌باشند. آنها در طبیعت بسیار فراوان هستند و اغلب در انواعی از محیط‌ها که در ارتباط با میزانشان باشند همانند خاک، فاضلاب، آب، کود و تولیدات کشاورزی و حیوانی یافت می‌شوند (۲). این میکروارگانیسم‌ها پر تعدادترین موجودات بر روی زمین هستند و تعداد آنها به 10^{31} می‌رسد و از لحاظ ساختار فیزیکی، محتوای ژنتیکی و نوع زندگی دارای تنوع زیادی هستند (۹). میزان تخمینی آنها ده برابر تعداد باکتری میزان خود می‌باشد.

باکتریوفاژهای *Caudovirales* معمولاً به دو شکل لایتیک (Lytic) و موقت (Temperate) وجود دارند. فاژهایی که برای اهداف درمانی استفاده می‌شوند معمولاً لایتیک مطلق هستند و از ۳ خانواده در راسته *Myoviridae* شامل *Caudovirales* *podoviridae* و *Siphoviridae* می‌باشند (۷).

جداسازی و توصیف فاژهای ویرولات و اختصاصی سالمونلا از منابع طبیعی با هدف نهایی ایجاد یک کلکسیون از فاژها جهت کنترل سالمونلا انجام می‌شود. در این پژوهش جداسازی فاژهای لایتیک ۵ سویه استاندارد سالمونلا تایفی موریوم و سالمونلا پاراتایفی B که از منابع انسانی جدا شده‌اند انجام شده و خصوصیات مورفولوژیکی

۱۵ دقیقه، سانتریفیوژ و محلول رویی توسط فیلتر $4/\phi$ ، فیلتر گردید.

سوسپانسیون حاصل از 10^{-1} تا 10^{-8} رقیق سازی شد. فائز رقیق شده و باکتری هدف کشت داده شده با $2/5$ میلی لیتر محیط سافت آگار (SA) که همان LB Broth (SA) است درصد آگار بود در دمای 50°C درجه مخلوط و سپس روی پلیت های LB آگار پخش شد و در 37°C درجه به مدت ۲۴ ساعت انکوبه گردید. اگر نمونه فاضلاب حاوی باکتریو فاژ بر علیه سویه باکتری باشد با ورود به باکتری و تکثیر، باعث انهدام و لیز باکتری می شود که این پدیده به شکل پلاک-های شفاف مشاهده می شود که نشان دهنده کشته شدن باکتری توسط باکتریو فاژ است.

خالص سازی پلاک:

علت انجام این مرحله جداسازی فائزهایی است که یک باکتری مشترک را آلوود کرده اند، زیرا به طور همزمان ممکن است دو فائز برای یک باکتری جداسازی شود که با انجام این مرحله می توان فائزهای را جدا نمود. پلاک لایتیک را با پی پت پاستور استریل برداشته و در یک میکروتیوب $1/5$ سی سی حاوی 500 میکرولیتر محیط LB براث ریخته و به مدت ۱۵ دقیقه در دمای اتاق قرار داده و پس از انکوباسیون مرحله Serial dilution انجام گردید. 100 میکرولیتر از رقت تهیه شده و 200 میکرولیتر از باکتری با $2/5$ میلی لیتر محیط سافت آگار (SA) در دمای 50°C درجه مخلوط و سپس روی پلیت های LB آگار پخش شد و در 37°C درجه به مدت ۲۴ ساعت انکوبه گردید.

غنج سازی:

200 میکرولیتر از استوک فائز با $2/5$ میلی لیتر SA و 200 میکرولیتر باکتری در دمای 50°C درجه مخلوط و روی پلیت LB آگار پخش شد و به مدت ۲۴ ساعت در 37°C درجه پلیت ریخته شد و به مدت ۱ ساعت در دمای اتاق قرار داده شد. پس از آن با سر سمپلر آبی استریل LB براث رویی انکوبه گردید. سپس 2 میلی لیتر از محیط LB براث رویی پلیت ریخته شد و به مدت ۱ ساعت در دمای اتاق قرار داده شد. پس از آن با سر سمپلر آبی استریل LB براث رویی

و دامنه میزبانی این باکتریو فاژها مورد ارزیابی قرار گرفته است.

روش بررسی

در یک مطالعه توصیفی جهت جداسازی باکتریو فاژها، نمونه های مورد نیاز از فاضلاب شهری و تصفیه خانه فاضلاب شهر رشت تهیه شد. نمونه گیری از فاضلاب به صورت مداوم و هر دو هفته یک بار انجام گرفت و نمونه ها بلا فاصله پس از تهیه به یخچال آزمایشگاه میکروب شناسی منتقل و در 4°C درجه سانتیگراد نگهداری شدند.

سوش های باکتری:

سویه های استاندارد باکتری سالمونلا مورد استفاده در این پژوهش سویه های تایپ بندی شده بودند که تمام خصوصیات ژنومی و پروفایل پروتئینی و آنزیمی آنها مشخص گردیده است و هر یک مربوط به یک کلن باکتریایی خاص می باشند. این سویه های سالمونلا بر اساس ۴۸ پروفایل های آللی برای 20 جایگاه پلثومورفیک آنزیم در 48°C طبقه بندی شده اند (Tm, Sp, He, Pb, Mu) Salmonella reference collections (SARA) (۱۰). سویه های منتخب شامل باکتری های استاندارد سالمونلا و شماره های $1, 6, 46, 48$ و 51 بود، که سویه شماره 1 و 6 از گروه سالمونلا تایفی موریوم و سویه های شماره $46, 48$ و 51 متعلق به گروه پاراتایفی B بودند. باکتری های مذکور در محیط نوتریت آگار کشت داده شدند و از باکتری ها سوسپانسیونی در محیط LB براث تهیه و به مدت ۲۴ ساعت در انکوباتور 37°C قرار داده شد.

ایزولاسیون باکتریو فاژ:

50 میلی لیتر از سوسپانسیون تهیه شده باکتری به همراه 50 میلی لیتر از نمونه فاضلاب و 50 میلی لیتر از محیط Double LB براث در یک ارلن با هم مخلوط و 24 ساعت در انکوباتور 37°C درجه انکوبه شد.

روز بعد، از سوسپانسیون نمونه برداری نموده و توسط سانتریفیوژ یخچال دار در دور در دور 5000 دور در دقیقه به مدت

رنگ آمیزی انجام گردید. گریدهای رنگ آمیزی شده Transmission میکروسکوپ الکترونی (LEO906;zeiss,Germany) مشاهده و از نواحی مورد نظر عکس تهیه شد. ذخیره سازی فاژ: ۵۰۰ میکرولیتر از استوک فاژ با ۵۰۰ میکرولیتر گلیسیرون استریل درون میکروتیوب مخلوط گردید به طوری که دو فاژ نشود و در فریزر 4°C -نگهداری گردید.

نتایج

جمع آوری و جداسازی باکتریوفاژها: طی ۶ ماه نمونه‌گیری از فاضلاب تصفیه خانه رشت به صورت دو هفته‌یک بار و انجام مراحل جداسازی و خالص سازی باکتریوفاژ، ۲ باکتریوفاژ لایتیک سویه‌های استاندارد ۱ و ۶ سالمونلا تایفی موریوم و ۳ باکتریوفاژ لایتیک برای سویه‌های ۴۶، ۴۸ و ۵۱ سالمونلا پاراتایفی B از کلکسیون استاندارد، ایزو لوه گردید (شکل شماره ۱).

میزان غلظت باکتریوفاژها:

با استفاده از تکنیک Plaque assay میزان غلظت باکتریوفاژها مشخص شد. تعداد فاژهای جداسازی شده به صورت plaque forming unit گزارش گردید (جدول ۱).

پلاک‌های دیده شده در هر ۵ باکتری آلوده شده با باکتریوفاژ، شفاف و فرم لایتیک بودند.

کشیده و در لوله فالکون استریل ریخته شد و باقی SA روی سطح پلیت با پت پت پاستور استریل تراشیده و به همان لوله فالکون اضافه شد. این لوله فالکون به مدت ۱۵ دقیقه در دور ۵۰۰۰ دور در دقیقه سانتریفیوژ و مایع رویی آن توسط فیلتر ۴/۴ فیلتر شد. این محلول حاضر به عنوان استوک می‌باشد و در ۴ درجه سانتیگراد نگهداری می‌شود.

تعیین دامنه میزانی:

این مرحله نشان می‌دهد که یک فاژ جداسازی شده قادر است چند باکتری از یک گونه را لیز کند.

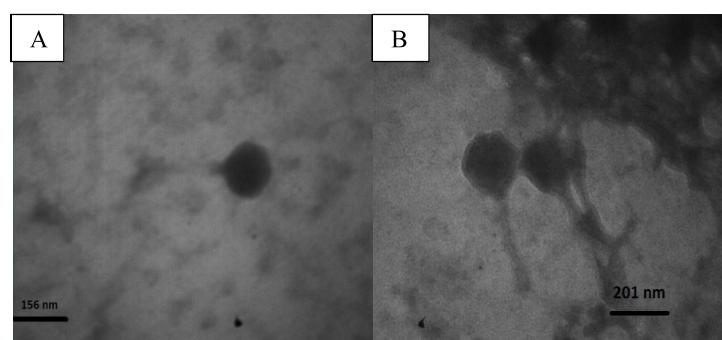
۱۰۰ میکرولیتر از ۱۹ سویه از کلکسیون باکتری سالمونلا کشت داده شده روی محیط LB آگار پخش گردید و به مدت ۲ ساعت در انکوباتور قرار داده شد تا سطح پلیت خشک شود. سپس به تعداد فاژهایی که داریم (تا ۴ فاژ در هر پلیت) ۱۰ میکرولیتر از استوک رقیق شده فاژ را روی پلیت ریخته و بدون پخش کردن صبر نمودیم تا در دمای اتاق جذب محیط شود و به مدت ۲۴ ساعت در ۳۷ درجه سانتیگراد انکوبه گردید. بعد از طی این مدت انکوباسیون مواردی که پلاک تشکیل دادند به عنوان مثبت گزارش گردید.

بررسی مورفولوژی فاژ با میکروسکوپ الکترونی: مقدار ۱۰ میکرولیتر از سوسپانسیون باکتریوفاژ را بر روی گرید پوشیده شده با کربن قرار داده و اجازه داده شد تا در دمای اتاق خشک شود. سپس با محلول اورانیل استات

جدول ۱: واحد تشکیل دهنده پلاک در هر میلی لیتر باکتریوفاژهای جدا شده بر ضد سویه‌های استاندارد کلکسیون سالمونلا

تعداد (pfu/ml)	باکتریوفاژ جدا شده
3×10^8	باکتریوفاژ جدا شده باکتری سالمونلا تایفی موریوم سویه استاندارد ۱
48×10^8	باکتریوفاژ جدا شده باکتری سالمونلا تایفی موریوم سویه استاندارد ۶
24×10^8	باکتریوفاژ جدا شده باکتری سالمونلا پاراتایفی B سویه استاندارد ۴۶
23×10^8	باکتریوفاژ جدا شده باکتری سالمونلا پاراتایفی B سویه استاندارد ۴۸
12×10^8	باکتریوفاژ جدا شده باکتری سالمونلا پاراتایفی B سویه استاندارد ۵۱

باکتریوفاژهایی که علیه سویه‌های استاندارد سالمونولا تایفی موریوم شماره ۶ و سالمونولا پاراتایفی شماره ۴۶، ۴۸ و ۵۱ جداسازی شدند متعلق به خانواده *Siphoviridae* باکتریوفاژ سالمونولا تایفی موریوم شماره ۱ نیز متعلق به خانواده *Podoviridae* بود.


بررسی دامنه میزبانی باکتریوفاژها: دامنه میزبانی ۵ باکتریوفاژ جداسازی شده با ۱۹ سویه دیگر از کلکسیون باکتری سالمونولا که همگی سویه‌های جداسازی شده از انسان بودند ارزیابی گردید که در جدول ۲ آمده است. هر ۵ سویه قادر به لیز سویه‌های میزبان خود در کل فرآیند بودند.

مورفولوژی و دسته بندی باکتریوفاژها: ۵ باکتریوفاژ جداسازی شده پس از رنگ آمیزی منفی و بررسی ویژگی‌های مورفولوژیکی توسط میکروسکوپ الکترونی دسته بندی شدند.

جدول ۲: دامنه میزبانی باکتریوفاژهای جدا شده

سویه استاندارد سالمونولا																			باکتریوفاژ
۷۰	۵۱	۴۸	۴۶	۶	۱	۲۷	۴۲	۶۲	۵۶	۴۴	۴۳	۱۹	۱۶	۵۹	۵۸	۵۵	۵۴	۵۳	
+	+			+	+		+	+			+								۱
				+	+	+	+	+	+				+		+	+	+		۶
				+	+	+		+	+					+		+	+		۴۶
				+	+			+	+	+	+	+	+	+	+	+	+		۴۸
	+				+		+	+				+	+	+	+	+	+		۵۱

علامت مثبت (+) نشان دهنده لیز سوش باکتری توسط باکتریوفاژ می‌باشد.

شکل ۱: تصویر میکروسکوپ TEM از باکتریوفاژهای جدا شده: A خانواده *Siphoviridae* و B خانواده *Podoviridae*

در سال ۱۹۷۰ واکسن‌ها با فاژ آلدوده شدن و لی در پی آن هیچ مشکل بالینی برای افراد آلدوده شده پیش نیامد که این می‌تواند نشان دهنده بی خطر بودن استفاده بالینی از باکتریوفاژها باشد (۱۷).

Alicyclobacillus acidoterrestris که عامل فساد آب میوه است از خاک اطراف درخت کنار جداسازی گردید که برای حذف باکتری از آب میوه و عدم صدمه به کیفیت آن در نظر گرفته شده که این از موارد دیگر کاربرد باکتریوفاژ می‌باشد (۱۸).

علاوه بر مطالعه حاضر که باکتریوفاژهای اختصاصی سالمونلا تایفی موریوم و پاراتایفی B جداسازی و مورد ارزیابی قرار گرفته، مطالعات دیگری بر روی باکتری‌های دیگر صورت گرفته است.

در مطالعه‌ای در تهران، باکتریوفاژ اختصاصی سالمونلا انتریتیدیس از مدفوع طیور جداسازی و کارایی آن در کاهش و حذف میزان سالمونلا در روده باریک حیوانات مبتلا به این باکتری و بهبود سیستم ایمنی آنها، مورد ارزیابی قرار گرفت (۱۹). همچنین در سال ۸۸ در مشهد جداسازی باکتریوفاژهای لایتیک علیه ایزوله‌های سودوموناس آتروژینوزای مقاوم به آنتی بیوتیک انجام گرفت که نتایج این پژوهش حاکی از آن بود که در غلظت بالا، فاژها اثرات باکتریسیدی بالایی دارند و با افزایش غلظت فاژ اثرات باکتریسیدی هم افزایش می‌یابد (۲۰) که البته با توجه به وجود پدیده Lysis from without فرضیه را رد کرد. زیرا با افزایش غلظت فاژها و اتصال آنها به گیرنده‌شان در سطح باکتری‌ها، انسجام غشا بهم ریخته و بدون ورود و تکثیر فاژ درون باکتری، دیواره آن لیز و باکتری از بین می‌رود.

در مطالعه مشابه دیگری در سال ۹۲ در اصفهان، نصر اصفهانی و همکاران، باکتریوفاژهای اختصاصی علیه سویه‌های سودوموناس آتروژینوزاهای دارای مقاومت چند دارویی به آمیکاسین، سفپیم، سفتازیدیم، جنتامایسین،

بحث

تجویز آنتی بیوتیک‌ها در انسان و دام جهت پیشگیری و درمان بیماری‌های باکتریایی شرایطی را جهت زنده ماندن سویه‌های مقاوم به آنتی بیوتیک ایجاد می‌کنند (۱۱). فلوروکینولون‌ها و سفالوسپورین‌های وسیع الطیف داروهای مناسب جهت درمان عفونت‌های مهاجم سالمونلا در کودکان و بزرگسالان می‌باشند (۱۲ و ۳). سویه‌های سالمونلا انتریکا در آسیا شایع هستند. به دلیل تفاوت الگوی مقاومتی در سروتاپ‌ها و مکان‌های مختلف، نمی‌توان یک الگوی مقاومتی ویژه در مورد سالمونلا ارائه نمود ولی در کل بیشترین مقاومت‌ها در سروتاپ تایفی موریوم گزارش شده است (۱۳). در مطالعه‌ای در ایران از سال ۷۸ تا ۷۹ میان ۴۰۰ نمونه مدفوع کودکان مبتلا به اسهال، ۶ مورد سالمونلا پاراتایفی B و یک مورد سالمونلا تایفی شناسایی شد. برخی سالمونلاهای جدا شده نسبت به سفوتاکسیم و سفالوتین مقاومت کامل و نسبت به جنتامایسین و کانامایسین مقاومت نسبی از خود نشان دادند (۱۴). بنابراین می‌توان پیش بینی نمود چنانچه نظارتی در مصرف آنتی بیوتیک‌ها انجام نگیرد علاوه بر آمینوگلیکوزیدها، سفالوسپورین‌ها نیز دیر یا زود بی‌اثر شوند (۱۵). موانع زیادی بر سر راه شرکت‌های دارویی در تولید آنتی بیوتیک‌ها وجود دارد، از جمله آنتی بیوتیک‌ها از بسیاری از داروها سودآوری کمتری داشته و دوره رژیم درمانی آنتی بیوتیک‌ها محدود است. همچنین رشد سریع مقاومت به آنتی بیوتیک‌ها مدت زمان کارآمدی و مفید بودن آنها را کم می‌کند (۱۶). یکی از روش‌های جایگزین، استفاده از باکتریوفاژها است. درمان باکتری‌های مقاوم به درمان توسط باکتریوفاژ می‌تواند بسیار مؤثر باشد. فاصلاب اغلب حاوی تعداد زیادی میکروب به دلیل آلدودگی مدفوع و منابع آب بیمارستان می‌باشد. فاژ بعد از واکنش با گیرنده باکتری وارد آن شده و باعث آلدودگی می‌باشد. اکثر فاژهای یافت شده، ویژگی زیادی برای گیرنده‌های میزانشان داشته‌اند و با گیرنده‌های متفاوت وارد واکنش نمی‌شوند.

فائز علیه سالمونولا تایفی موریوم مؤثر بودند، اما استفاده از cocktail در مقایسه با فائزها به صورت جداگانه خیلی مؤثر نبوده است (۲۱).

در چین نیز Bao و همکاران در سال ۲۰۱۵، ۲ باکتریوفائز لایتیک PA13076 و PA2184 توسط ۲ باکتری سالمونولا انتربتیدیس به عنوان میزبان باکتریوفائز، از فاضلاب مرغ جداسازی شد و با کمک میکروسکوپ الکترونی جز خانواده *Myoviridae* دسته بندی گردید که دامنه میزبانی وسیعی در جنس سالمونولا داشتند و میزان اثر بخشی آنها به صورت مستقل و cocktail در دمای ۴ درجه سانتیگراد بهتر از ۲۵ درجه سانتیگراد بود (۲۲).

Wong و همکاران در سال ۲۰۱۴ در مالزی، باکتریوفائز لایتیک st1 را از مدفوع مرغ جداسازی و شناسایی کردند و به عنوان کاندید برای کنترل سالمونولا در مرغ ارزیابی نمودند. این فائز متعلق به خانواده *Siphoviridae* بود که توانایی آلوود کردن سالمونولا تایفی موریوم و *S.hadar* را نیز داشت (۲۳).

نتیجه‌گیری

با توجه به افزایش روزافرون مقاومت آنتی بیوتیکی در سراسر جهان و مشکلات تولید آنتی بیوتیک‌های جدید، نتایج این مطالعه و مطالعات مشابه نشان می‌دهد استفاده از باکتریوفائزها به عنوان گزینه درمانی و جایگزین مناسب برای آنتی بیوتیک‌ها به ویژه در باکتری‌های دارای مقاومت چند دارویی مورد بررسی بیشتری قرار بگیرد.

تشکر و قدردانی

بدینوسیله از زحمات سرکار خانم دکتر زبردست و پرسنل مرکز تحقیقات سلولی و مولکولی که صمیمانه در انجام این طرح همکاری نمودند تشکر و قدردانی می‌شود.

سپروفلوکسازین، ایمی پنم و مروپنم را جداسازی نمودند که پس از مواجهه با سودوموناس‌های غیر مقاوم به دارو و سه باکتری گرم منفی اسینتوباکتر بومانی، کلبسیلا پنومونیه و انتروباکتر کلوآکه، بی‌تأثیر بود (۱۷). البته نوع باکتریوفائز جداسازی شده مشخص نشده بود، ولی در پژوهش حاضر نوع باکتریوفائزها مشخص گردیده است که در مطالعات مشابه می‌تواند مفید باشد.

در آمریکا در سال ۲۰۱۴ در مطالعه‌ای با هدف تولید کلکسیونی از باکتریوفائزهای لایتیک که قادر به آلوده سازی سرووارهای متفاوت و پاتوژن سالمونولا انتریکا، انجام شد ۶ باکتریوفاز لایتیک علیه سرووارهای سالمونولا انتریکا از نمونه فاضلاب و مدفوع حیوانات جداسازی و از نظر مورفولوژیکی و دامنه میزبانی بررسی گردید که دو فائز SEA2 و SEA1 در میان فائزهای جداسازی شده دامنه میزبانی وسیعی علیه سالمونولا داشتند و SEA2 در آلوده سازی سالمونولا تایفی موریوم DT104 بسیار کارآمد بود که با بررسی توسط میکروسکوپ الکترونی TEM متعلق به خانواده *Myoviridae* شناسایی شدند و ۴ باکتریوفاز دیگر نیز متعلق به خانواده *Siphoviridae* بودند (۲). در مطالعه حاضر که قسمتی از آن مربوط به جداسازی باکتریوفائزهای لایتیک سویه‌های استاندارد سالمونولا تایفی موریوم و سالمونلا پاراتایفی B جداسازی شده از انسان بود دو باکتریوفاز ایزوله شده با بررسی توسط میکروسکوپ الکترونی TEM متعلق به خانواده *Siphoviridae* و *Podoviridae* شناسایی گردیدند.

Pereira و همکاران در سال ۲۰۱۶ در پرتغال، ۳ باکتریوفائز pHSE-2، pHSE-5 و pHSE-1 را علیه سالمونولا تایفی موریوم جداسازی کردند که پس از بررسی توسط *Siphoviridae* میکروسکوپ الکترونی متعلق به خانواده بودند و آنها را به صورت جداگانه و با ترکیب ۲ یا ۳ فائز برای کنترل سالمونولا تایفی موریوم مقایسه کردند که هر ۳

References

1. Hungaro H, Mendonca R, Gouvea D, Vanetti M, Pinto C. Use of bacteriophages to reduce *Salmonella* in chicken skin in comparison with chemical agents. *Food Research International* 2013; 52: 75-81
2. Akhtar M, Viazis S, Gonzalez F. Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against *Salmonella enterica* serovars. *Food Control*. 2014;38:67-74.
3. Van Boxstael S, Dierick K, Van Huffel X, Uyttendaele M, Berkvens D, Herman L and et al. Comparison of antimicrobial resistance patterns and phage types of *Salmonella typhimurium* isolated from pigs, pork and humans in Belgium between 2001 and 2006. *Food Research International* 2012; 45: 913-918.
4. Gantzhorn M, Olsen J, Thomsen L. Importance of sigma factor mutations in increased triclosan resistance in *Salmonella typhimurium*. *BMC Microbiology* 2015; 15: 105.
5. Grant A, Hashem F, Parveen S. *Salmonella* and *Campylobacter*: Antimicrobial resistance and bacteriophage control in poultry. *Food Microbiology* 2016; 53:104-109.
6. Eshraghi S, Soltan Dalall M, Fardsanei F, Zahraii Salehi T, Ranjbar R, Nikmanesh B, et al. *Salmonella enteritidis* and antibiotic resistance patterns: a study on 1950 children with diarrhea. *Tehran University Medical Journal* 2010; 67: 876-882.
7. Ranjbar R, Naghoni A, Izadi M, Jafari N, Panahi Y. Isolation and identification of antibiotic resistance *Salmonella typhimurium*. *Journal of Military Medicine* 2009; 11:115-118.
8. World health organization. WHO's first global report on antibiotic resistance reveals serious, worldwide threat to public health. Geneva: world Health Report ,2014.
9. Szeloch A, Kawa Z, Dabrowska B, Kassner J, Skrobek G, Augustyniak D, and et al. Characterizing the biology of novel lytic bacteriophages infecting multidrug resistant *Klebsiella pneumonia*. *Virology Journal* 2013; 10:100.
10. Beltran P, Plock S, Smith N, Whittam T, Old D, Selander R. Reference collection of strains of the *Salmonella typhimurium* complex from populations. *Journal of General Microbiology* 1991; 137:601-606.
11. Mahfozi L, Tareman S. Antibiotic resistance of *Salmonella typhi* isolated from typhoid fever patients. *Journal of Guilan University of Medical Science* 2002; 44:49-53.
12. Bearson B, Brunelle B. Fluoroquinolone induction of phage mediated gene transfer in multidrug resistant *Salmonella*. *International Journal of Antimicrobial Agents* 2015; 46:201-204.
13. Abdollahi A, Mohammadi A, Fasihi M, Shayan R, Radmanesh R. Emergence of Bla-ctx-m-type Gene in *Salmonella Enterica* Serotypes Isolated from Patients Stool. *Journal of Isfahan Medical School* 2011; 28: 1-10.
14. Yousefi S, Mojtabaei A, Shenagari M and Atrkar - Roushan Z. The relation of qnr genes in induction of resistance to ciprofloxacin in *Escherichia coli*. *Kurdistan University of Medical Sciences* 2015; 20: 52- 60.
15. Sharifzade A, Hematzade F, Namjo A, Danesh A. Antibiotic susceptibility of antibiotic-resistant *Salmonella* isolated from children 0 to 2 years in Shahrekord and bacterial resistance factor transmissibility to *E.coli* k12. *Journal of Shahrekurd Medical Science* 2004;1:1-6.
16. Ryan E, Gorman S, Donnelly R, Gilmore B. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. *Journal of Pharmacy And Pharmacology* 2011; 63:1253-1264.

17. Nasr-Esfahani B, Roshnaei M, Fazeli H, Havaei A, Moghim S, Ghasemian-Safaei H, et al. The effect of isolated bacteriophage on multi-drug resistant (MDR) *Pseudomonas Aeruginosa*. Journal of Isfahan Medical School 2014; 32:1805-1815.
18. Tajbakhsh A, Tofighi E, Motamedi H, Rafie S. Isolation *Alicyclobacillus acidoterrestris* specific bacteriophage, the causative agent of fruit juice spoilage from soil. Journal of Food Microbiology 2014; 1:15-19.
19. Mosab Ahmadi, Mohammad Amir Karimi Torshizi, Shaban Rahimi. Isolation of lytic bacteriophage from poultry's feces and evaluation of its efficiency to reduce salmonella enteritidis in vitro and in vivo. Iranian Journal of Medical Microbiology 2015; 9: 37-47.
20. Khajekaramodin M, Bazaz S, Ebrahimi M, Ghazvini K, Aghaie M, Naderinasab M, et al. Enrichment and isolation lytic bacteriophage against *pseudomonas aeruginosa* isolates resistant to antibiotics. Journal of Medical Microbiology 2009; 2, 3:67-72.
21. Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha A, et al. Bacteriophages with potential to inactive *Salmonella typhimurium*: use of single phage suspensions and phage cocktails. Virus Research 2016; 220:179-192.
22. Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. Bio-Control of salmonella enteritidis in foods using bacteriophages. Viruses 2015; 7: 4836-4853.
23. Wong C, Sieo C, Tan W, Abdullah N, Bejo M, Abu J, Ho Y. Evaluation of a lytic bacteriophage, λ st1, for biocontrol of *Salmonella enterica* serovar *typhimurium* in chickens. International Journal of Food Microbiology 2014; 172:92-101.