

The effect of eight weeks of aerobic training on serotonin and tryptophan hydroxylase levels in hippocampus in type 2 diabetic rats

Amirsasan R., PhD¹, Dabbagh Nikokheslat S., PhD², Karimi P., PhD³, Esmaeili A., PhD Student⁴

1. Associate Professor of Exercise Physiology, Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
2. Assistant Professor of Exercise Physiology Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tabriz, Tabriz Iran.
3. Assistant Professor of Clinical Biochemistry. Neuroscience Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
4. PhD student of Exercise Physiology, Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tabriz, Tabriz Iran (Corresponding Author), Tel: +41-33393258, ameneh.esmaeili@yahoo.com

ABSTRACT

Backgrounds and Aim: Aerobic exercise has proven benefits in treating and reducing the incidence of complications of chronic diseases such as diabetes. In this study we evaluated the effect of aerobic training on serotonin and tryptophan hydroxylase levels in hippocampus in type 2 diabetic rats.

Materials and Methods: 30 rats were randomly divided into healthy control, diabetic control, exercise diabetic groups. 2nd and 3rd groups were made diabetic by intraperitoneal injection of streptozotocin (37mg/kg), two weeks after receiving high-fat diet. Groups of aerobic exercise performed treadmill exercise 5 times/ week for 8 weeks with duration and intensity of 55min /d and 26m/min respectively in the final weeks. 24 hours after the last exercise blood samples and hippocampus tissue samples were obtained and concentrations of serotonin (μ g/g) and tryptophan hydroxylase were measured by Elisa and western blotting methods respectively. We used ANOVA and Tukey post hoc test for data analysis.

Results: Statistical analysis showed that the diabetic group had significantly lower serotonin levels compared to the healthy control group ($P=0.001$) and exercise diabetic group ($P=0.01$). The mean tryptophan hydroxylase level of the diabetic groups were significantly lower than that of the healthy control group ($P=0.001$). The amount of tryptophan hydroxylase was significantly higher in the exercise diabetic group compared to that in the diabetic control group ($P=0.001$).

Conclusion: In this study, diabetes led to reduction of serotonin and tryptophan hydroxylase levels in the hippocampus. Also eight weeks of aerobic exercise increased tryptophan hydroxylase level in the hippocampus of the diabetic rats.

Key Words: Aerobic Training, Diabetes, Depression.

Received: Jun 29, 2016 **Accepted:** Jan 22, 2017

تأثیر هشت هفته تمرین هوایی بر سروتونین و تریپتوفان هیدروکسیلاز هیپوکامپ موش‌های دیابتی نوع ۲

رامین امیرسازان^۱، سعید دباغ نیکو خصلت^۲، پوران کریمی^۳، آمنه اسماعیلی^{*}

۱. دانشیار فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، ایران.

۲. استادیار فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، ایران.

۳. استادیار بیوشیمی بالینی، مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی تبریز، تبریز، ایران.

۴. دانشجوی دکتری فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، ایران (نویسنده مسئول)، تلفن ثابت: ۰۴۱-۳۳۳۹۳۲۵۸

ameneh.esmaeili@yahoo.com

چکیده

زمینه و هدف: تمرینات هوایی مزایای ثابت شده‌ای در درمان و کاهش عوارض بیماری‌های مزمن از جمله دیابت دارند. در این تحقیق قصد داریم تا تأثیر تمرین هوایی بر سروتونین و تریپتوفان هیدروکسیلاز ناحیه هیپوکامپ موش‌های دیابتی نوع ۲ را بررسی نماییم.

روش بررسی: ۳۰ موش صحرایی نر به طور تصادفی به ۳ گروه ۱-کنترل سالم-۲-کنترل دیابتی-۳-تمرین دیابتی تقسیم‌بندی شدند. گروه‌های ۲ و ۳ برای دیابتی شدن دو هفته پس از غذای پرچرب با تزریق درون صفاقی، استرپتوزوتوسین (۳۷ mg/kg) دریافت کردند. گروه‌های تمرین هوایی ۵ جلسه در هفته و ۸ هفته بر روی نوار گردن با مدت و شدتی که در هفته‌های پایانی به ترتیب به ۵۵ min/d و ۲۶ m/min می‌رسید، دویدند. ۲۴ ساعت بعد از آخرین تمرین، نمونه خونی و بافت هیپوکامپ موشها استخراج شد و غلظت سروتونین (g/g) آن به روش الیزا و غلظت تریپتوفان هیدروکسیلاز آن به روش وسترن بلازینگ اندازه گیری شد.

یافته‌ها: نتایج نشان داد که میزان سروتونین در گروه کنترل دیابتی به طور معنی‌داری کمتر از گروه کنترل سالم ($P=0.01$) و تمرین دیابتی ($P=0.01$) بود. در نتایج تریپتوفان هیدروکسیلاز، مانگین دو گروه دیابتی به طور معنی‌داری کمتر از گروه کنترل سالم بود ($P=0.01$). همچنین نتایج نشان داد که میزان تریپتوفان هیدروکسیلاز در گروه تمرین دیابت به طور معنی‌دار بیشتر از گروه کنترل دیابتی بود ($P=0.01$).

نتیجه‌گیری: در این مطالعه دیابت باعث کاهش سروتونین و تریپتوفان هیدروکسیلاز ناحیه هیپوکامپ شد. همچنین هشت هفته فعالیت هوایی باعث افزایش سروتونین و تریپتوفان هیدروکسیلاز هیپوکامپ موش‌های دیابتی شد.

کلید واژه‌ها: تمرین هوایی، دیابت، افسردگی

وصول مقاله: ۹۵/۴/۸؛ اصلاحیه نهایی: ۹۵/۱۰/۱۲؛ پذیرش: ۹۵/۱۱/۲

کاهش تریپتوفان پلاسمای و کاهش تولید سروتونین اشاره کرد (۱۱). آنزیم تریپتوفان هیدروکسیلаз^۷ باعث ساخت سروتونین از تریپتوفان می‌شود بنابراین به عنوان آنزیم کلیدی و محدود کننده در ساخت سروتونین مغزی شناخته می‌شود (۱۲) بنابراین می‌تواند یکی از عوامل موثر بر کاهش ساخت سروتونین در مغز باشد.

چگالی بالایی از گیرنده ۱A سروتونین^۸ در جایگاه پس سیناپسی هیپوکامپ وجود دارد. از آنجایی که اعصاب سروتونینی در هیپوکامپ هم از نواحی خلفی و هم از نواحی میانی هسته‌های رافه سرچشمه می‌گیرند و نسبت به تغییرات دستگاه سروتونینی بسیار حساس می‌باشد. تصور می‌شود که گیرنده‌های ۵-HT1A موجود در هیپوکامپ نقش موثری در بروز رفتارهای افسردگی دارند (۱۳). در عین حال مطالعات زیادی بر روی دستگاه سروتونینی ناحیه هیپوکامپ و به ویژه تاثیر دیابت بر این دستگاه، صورت نگرفته است.

فعالیت بدنی منظم مزایای درمانی ثابت شده‌ای مثل معالجه بیماری‌های روانی، تقویت بهبودی آسیب مغزی و بیماری‌های مقاوم تخریب کننده عصبی می‌باشد. تنظیم عوامل وابسته به اعصاب، عوامل وابسته به عروق، واسطه‌های التهابی و انتقال‌دهنده‌های عصبی در تاثیر فعالیت بر عملکرد مغزی در گیر هستند. در میان این تاثیرات ترشح انتقال‌دهنده‌های عصبی به خصوص مونوآمین‌ها به سازگاری‌های ناشی از فعالیت وابسته است (۱۴). بنابراین به نظر می‌رسد عوامل مختلفی مانند نوع فعالیت، مدت فعالیت و عوامل محیطی بر عملکرد تاثیر بگذارند (۱۲).

مطالعات نشان می‌دهد که کاهش میزان سروتونین در برخی نواحی مغزی در اثر سازگاری‌های ناشی از تمرینات استقامتی بوجود می‌آید. کاهش میزان نسبت سروتونین به تریپتوفان در موش‌های تمرین کرده نشان می‌دهد که کاهش سروتونین مغزی ناشی از تمرین ممکن است در

مقدمه

دیابت ملیتوس بیماری خود مراقبتی است که بیش از ۳۵۰ میلیون نفر را در سراسر جهان درگیر کرده است (۱). دیابت ملیتوس با مشخصه افزایش قند خون به علت نقص در ترشح انسولین و یا تاثیر انسولین به علت مقاومت به انسولین، شناخته می‌شود (۲) و عوارضی مانند بیماری‌های قلبی، کلیوی و بسیاری از بیماری‌های دستگاه عصبی محیطی و مرکزی دارد. بیماری‌های عصبی می‌توانند عوارض ناتوان کننده داشته باشند و بر ناحیه‌های حساس مغز مانند هیپوکامپ تاثیر داشته باشند. نقص در هیپوکامپ منجر به اختلال در حافظه و یادگیری می‌شود و یکی از عوارض دیابت بر سیستم عصبی مرکزی می‌باشد (۳). از طرف دیگر بر طبق مطالعات اصغر و همکاران^۱ (۴) خامش و همکاران^۲ (۵) و لی و همکاران^۳ (۶) افسردگی یک مشکل شایع بین بیماران مبتلا به دیابت نوع ۱ و ۲ می‌باشد. خطر بروز علائم افسردگی در بین افراد مبتلا به دیابت دو برابر بیشتر از افراد غیر دیابتی مستقل از جنس و نوع دیابت و نحوه اندازه گیری، است (۷). سازوکارهای اصلی ارتباط بین دیابت و افسردگی تغییر پیام رسانی انسولین در مغز، فعال سازی مسیرهای پیش التهابی و تنظیم مثبت سیستم‌های هورمونی شبه گلوكورتیکودیدی می‌باشد. مکانیسم دیگر تاثیر سبک زندگی می‌باشد (۸). زاکی و همکاران^۴ نشان دادند که کاهش سروتونین مغزی از عوامل ایجاد افسردگی مغزی در موش‌ها شد (۹) و کیم و همکاران^۵ بیان کردند که تحمیل شرایط افسردگی زا در موش‌ها باعث کاهش سروتونین مغزی می‌شود (۱۰). در سبب شناسی افسردگی تخلیه سروتونین^۶ از عوامل نروپیولوژیکی می‌باشد. عوامل مختلفی باعث اختلال در دستگاه سروتونین می‌شود که از میان آنها می‌توان به

^۱ - Asghar S et al 2007

^۲ - Khamesh M E et al 2007

^۳ - Li C et al 2009

^۴ - Zaki H F et al 2013

^۵ - Kim T W et al 2015

^۶ - 5-Hydroxy Triptamin (5-HT)

⁷ - Tryptophan hydroxylase (TPH)

⁸ - Serotonin 1A receptor (5-HT1A)

تمامی مداخلات پس از گذشت حداقل دو هفته استقرار حیوانات و در آغاز سیکل شبانه (ساعت ۱۹) در آزمایشگاه حیوانات به انجام رسید. در این بررسی از آن دسته موش‌های صحرایی استفاده گردید که در شرایط طبیعی بدون برقراری حالت روزه‌داری، میزان گلوكز سرم آنها پایین تر از حد 250 mg/dl باشد. فرایند کار با موش‌های صحرایی در این تحقیق در کمیته اخلاق کار با حیوانات دانشگاه علوم پزشکی تبریز به تأیید رسید.

بعد از گذشت ۲ هفته سازگاری با محیط آزمایشگاه، برای دیابتی کردن نمونه‌های دیابتی ۲ هفته مصرف غذای پرچرب ($50 \text{ درصد چربی، } 25\% \text{ پروتئین و } 25 \text{ درصد کربوهیدراتات که توسط محققان و با همکاری شرکت کانی دام تهیه شد) و سپس تزریق درون صفاقی دوز پایین استرپتوزوتوسمین (37 mg/kg) در بافر سیترات $1/10$ مولار (PH $4/5$) بعد از ۶ ساعت ناشتابی اعمال گردید. برای گروه شاهد همان میزان بافر تزریق شد. ۷۲ ساعت بعد از تزریق دارو، گلوكز نمونه خونی از ورید دمی حیوان با استفاده از گلوكومتر قابل حمل بررسی شد و غلظت گلوكز بالاتر از 300 mg/dl به عنوان موش‌های صحرایی دیابتی وارد تحقیق شدند.$

تمرین هوایی: گروه‌های تمرین هوایی تمرین ۵ جلسه در هفته و ۸ هفته بر روی نوار گرگدان موتوردار دویدند. در ابتداء، موش‌های صحرایی به مدت ۱۰ دقیقه در روز و با سرعت ۱۰ متر در دقیقه و با شیب ۶ درجه (10%) تمرین خود را آغاز کردند (هفته اول). سرعت و مدت تمرین بتدریج در طول ۳ هفته بعد افزایش یافت تا اینکه در هفته‌های پایانی مدت و شدت تمرین به ترتیب به ۵۵ دقیقه در روز و ۲۶ متر در دقیقه رسید. مطابق تحقیقات گذشته، شاخص‌های خستگی مرکزی با شدت‌های تمرینی در حد 19 متر در دقیقه به مدت ۱ ساعت در ۸ هفته (13) و یا 16 متر در دقیقه به صورت فزاینده تا 28 متر در دقیقه در ۶ هفته نیز گزارش شده است (15 و 13).

اثر کاهش بیان تریپوفان هیدروکسیلаз که آنزیم محدود کننده ساخت سروتونین است، باشد. یافه‌ها کاهش میزان تریپوفان هیدروکسیلاز قشر مغز و جسم مخطط مغز در موش‌های تمرین کرده را نشان می‌دهند. این کاهش میزان تریپوفان هیدروکسیلاز می‌تواند ناشی از کاهش تولید و یا افزایش تجزیه پروتئین آن باشد (۱۵). درباره تاثیر تمرین منظم بر دستگاه سروتونینی در بیماری دیابت مطالعه‌ای مشاهده نشده و انجام مطالعاتی برای شناخت تاثیر فعالیت بدنی بر دستگاه سروتونینی افراد مبتلا به دیابت ضروری به نظر می‌رسد.

لذا، به دلیل نامشخص بودن تاثیر تمرین بر دستگاه سروتونینی هیپوکامپ افراد مبتلا به دیابت، در این تحقیق تاثیر هشت هفته تمرین هوایی متوسط را بر سروتونین و تریپوفان هیدروکسیلاز هیپوکامپ موش‌های دیابتی نوع ۲ بررسی نمودیم.

روش بررسی

تحقیق حاضر از نوع تجربی و طرح پس آزمون با گروه کنترل و از نظر هدف پژوهش، بنیادی - کاربردی می‌باشد. به علت عدم امکان انجام این تحقیق بر روی آزمودنی‌های انسانی در این تحقیق از موش‌های صحرایی نر سفید نژاد ویستار ($n=30$) با سن حدود 6 ماهگی در محدوده وزنی 225 الی 300 گرم استفاده گردید. ابتدا، موش‌های صحرایی به طور تصادفی به 3 گروه مستقل 1 -کنترل سالم -2 -کنترل دیابتی -3 -تمرین هوایی تقسیم‌بندی شدند و در هر گروه 10 موش صحرایی قرار گرفت. تمام حیوانات در آزمایشگاه حیوانات در یک محیط کم استرس (دما $20-22^{\circ}\text{C}$ ، رطوبت 50 درصد و کم سر و صدا) و سیکل روشنایی - تاریکی 12 ساعته به صورت انفرادی در هر قفس نگهداری شدند. ضمناً حیوانات آزادانه به آب لوله کشی و غذای فشرده مخصوص موش (شرکت خوراک دام پارس) به مدت دو ماه و 2 هفته دسترسی داشتند. به منظور ایجاد حالت سازش با محیط،

انکوبه شد. و سپس با روش کمی لومینسانس واستفاده از فیلم رادیوگرافی به ظهور رسیدند. دانسیته باندها توسط نرم افزار J Image اندازه گیری شد و سپس در مقابل باند بنا اکتین نرمالیزه شدند تا میزان تریپتوфан هیدروکسیلаз به دست آید. آنتی بادی تریپتوфан هیدروکسیلاز از شرکت سانتاکروز^{۱۳} تهیه شد. حساسیت این روش در حد 100 pg/mL می باشد.

اندازه گیری شاخص های دیابتی: بعد از جمع آوری نمونه های سرمی و پلاسمایی، اندازه گیری میزان گلوکز سرم بر حسب میلی گرم بر دسی لیتر سرم توسط روش آنژیمی گلوکز اکسیداز (زیست شیمی) انجام گردید. بعلاوه، تعیین غلظت انسولین پلاسما به روش الایزا با استفاده از کیت انسولین (15 pg/L) شرکت کریستال دی بیوتک سنجیده شد.

روش تجزیه و تحلیل آماری: برای تجزیه و تحلیل آماری از آمار توصیفی به صورت میانگین \pm انحراف استاندارد استفاده شد. برای بررسی تفاوت های بین گروه های مستقل بعد از اطمینان از نرمال بودن داده ها با استفاده از آزمون کلموگروف - اسپیرنف از طرح آزمون آنالیز واریانس یک راهه و آزمون تعقیبی توکی در سطح معنی داری کمتر از 0.05 ، تحت نسخه ۱۸ نرم افزار آماری SPSS استفاده گردید این آزمون برای اندازه گیری یک صفت کمی در سه یا بیش از سه گروه مستقل مورد استفاده قرار می گیرد.

یافته ها

در این بخش نتایج تحقیق به صورت متمرکز در جدول ۱ آورده شده است و در ادامه به بررسی تفاوت ها پرداخته شده است.

اندازه گیری سروتونین و تریپتوфан هیدروکسیلاز ^{۲۴} ساعت بعد از آخرین جلسه تمرینی (۱۳ و ۱۱)، گروه تمرین دیابتی، موش های صحرایی موجود در همه گروه ها بوسیله تزریق درون صفاقی کتابمین (۹۰ میلی گرم بر کیلو گرم) و زایلازین (۱۰ میلی گرم بر کیلو گرم) بی هوش و سپس جراحی شدند و ناحیه هیپوکامپ آن ها بلا فاصله استخراج و در نیتروژن 80°C - منجمد و برای بررسی های بعدی نگهداری شد. همچنین نمونه سرمی و پلاسمایی نیز از همه حیوانات به دست آمد. بنابراین همه داده های به دست آمده از گروه های در این مطالعه به صورت پس آزمون می باشد.

نمونه های مغزی منجمد شده در بافر هموژن کننده زیر صفر درجه ($1:20$ mM (wt/vol 25 mM هپس، 25 mM EDTA 1 mM ، درصد تریوتون 100 X ، ساکاروز 1 g)، درصد تریوتون 100 X و یک قرص کامل 50 mM مهار کننده پروتئاز کاکتیل $7/4$ (Roche) $\text{PH} 7/4$ هموژن شد. مواد هموژن شده به مدت 25 دقیقه با سرعت 15000 g (4°C) سانتریفیوژ شد. سپس، مواد شناور جمع آوری شدند. غلظت سروتونین به روش الایزا با کیت سروتونین (حساسیت 0.4 ng/mL) شرکت کریستال دی بیوتک^۹ اندازه گیری شد. الکتروفورز ژل^{۱۰} و وسترن بلاستینگ^{۱۱}: پروتئین (30 \mu g) نمونه های هموژن شده بوسیله الکتروفورز ژل سدیم دودسیل سولفات-پلی اکریلامید (صفحه SDS) با استفاده ژل حل کننده $5/5\%$ (ACC فسفو و تام)، جدا گردید. پروتئین های جدا شده بوسیله صفحه SDS به صورت الکتروفوریک به غشای پلی وینیلیدیم دی فلوراید منتقل شده و غشا با آنتی بادی مونوکلونال مورین آنتی - تریپتوфан هیدروکسیلاز^{۱۲} در طول شب در دمای 4°C انکوبه شد. کمپلکس آنتی بادی - تریپتوfan هیدروکسیلاز به مدت 1 ساعت در دمای اتاق ضد رت بُزی IgG

^۹ - Crystal day Biotech

^{۱۰} - Gel Electrophoresis

^{۱۱} - Western Blotting

^{۱۲} - Monoclonal murine anti-TpH

¹³ - Santa Cruz

(P=.۰/۰۰) در گلوکز سرمی و بین گروههای ۱ و ۲ (P=.۰/۰۱) و ۱ و ۳ (P=.۰/۰۱) برای انسولین سرمی تفاوت معناداری وجود دارد. همچنین آزمون تعییی توکی نشان می‌دهد که بین گروههای ۱ و ۲ (P=.۰/۰۰۱) و ۲ و ۳ (P=.۰/۰۱) برای سروتونین و بین گروههای ۱ و ۲ (P=.۰/۰۰۱)، (P=.۰/۰۰۱) و ۳ و ۴ (P=.۰/۰۰۱) برای تریپتوфан هیدروکسیلаз تفاوت معناداری وجود دارد.

آنالیز آماری نشان می‌دهد که بین گروههای سه گانه میزان گلوکز سرمی (P=.۰/۰۱) = ۶۵/۳۸۶ (۱۸ و ۲)، انسولین سرمی (P=.۰/۰۱) = ۶/۸۸۳ (۱۸ و ۲)، سروتونین (P=.۰/۰۱) = ۴/۹۸ (۱۸ و ۲) و تریپتوфан هیدروکسیلاز (P=.۰/۰۱) = ۴۷۵/۶۹ (۱۸ و ۲) هیپوکامپ تفاوت معنی داری وجود دارد. آزمون تعییی توکی نیز نشان می‌دهد که بین گروههای ۱ و ۲ (P=.۰/۰۱)،

جدول ۱: میزان گلوگز و انسولین سرمی و سروتونین هیپوکامپ

میانگین	میانگین	میانگین	میانگین	میانگین
گلوکز mg/ml	انسولین μU/L	سروتونین (μg/g)	تریپتوфан هیدروکسیلاز	
#۱۷۵±۵۷	*۳۹۲±۵۶	۱۲۴±۱۵	۰/۴۷±۰/۰۱	
*۳/۶±۱/۳	*۲/۴±۰/۵	۵/۱±۰/۴		
#۰/۴۶±۰/۰۲	*۰/۴۲±۰/۰۱			
#*۰/۰۸۶±۰/۰۱	*۰/۰۷۲±۰/۰۲	۱±۰/۰۰		

* نشان دهنده تفاوت معنی دار با گروه کنترل سالم است. # نشان دهنده تفاوت معنی دار با گروه کنترل دیابت است.

بود که نشان می‌دهد که القای دیابت نوع ۲ باعث کاهش انسولین سرمی نیز می‌شود. در مدل دیابتی مورد مطالعه در این تحقیق از روش تزریق یک بار استروپتوزوتوسین با دوز mg/kg ۳۷ در هر کیلوگرم با رژیم غذایی پرچرب استفاده شده است که مطالعات نشان می‌دهند در این مدل باعث القای دیابت نوع ۲ می‌شود و میزان انسولین با گروه کنترل تفاوت معناداری ندارد و سلولهای بتای پانکراس تخریب نمی‌شوند اما میزان حساسیت به انسولین در گیرنده‌های انسولین پایین می‌آید (۱۶).

بحث

در این تحقیق نشان داده شده که میزان گلوکز سرمی در گروههای دیابتی بیشتر از گروه کنترل سالم می‌باشد و در گروه کنترل دیابتی این تفاوت معنی دار بود که این نشان دهنده افزایش گلوکز سرمی به علت القاء دیابت در موش‌ها می‌باشد. همچنین میزان گلوگز سرمی در گروه تمرین دیابت با گروه کنترل سالم تفاوت معنی داری ندارد اما به طور معنی داری کمتر از گروه کنترل دیابتی است که نشان می‌دهد تمرین باعث بهبود افزایش گلوکز ناشی از القاء دیابت شده است. میزان انسولین سرمی در گروه کنترل سالم به طور معنی داری بالاتر از گروههای دیابتی

دهنده تومور آلفا^۷ می‌شود و این سایتوکاین‌ها با افزایش فعالیت آنزیم ایندول آمین^۸ و دی‌اکسیژنаз^۹ در مغز باعث تغییر مسیر متابولیسم تریپتوفان و کاهش تولید سروتونین و افزایش تولید کائینورینین^{۱۰} در مغز می‌شود. فعال کردن آنزیم تریپتوفان^{۱۱} و دی‌اکسیژناز^{۱۲} با استرس نیز مسیر دیگری برای کاهش ساخت سروتونین و افزایش ساخت کائینورینین در مغز می‌باشد. کاهش سروتونین و متابولیت‌های آن باعث عوایقی همچون اختلال در خواب و بیداری و ریتم بیولوژیکی و اختلال عصبی مشاهده شده در افسردگی می‌شود. تنظیم مثبت KYN هم باعث اختلالات اکسیدانی و شناختی که مشخصاً بر افسردگی تاثیر دارد، می‌شود (۲۲).

میزان سروتونین هیپوکامپ گروه تمرین دیابتی به طور معنی‌داری بیشتر از گروه کنترل دیابتی بود و تفاوت میزا سروتونین هیپوکامپ گروه کنترل سالم و تمرین دیابتی معنی‌دار نمی‌باشد. این یافته‌ها با نتیجه مطالعات لیو و همکاران^{۱۳} (۲۳) و کیم و همکاران^{۱۴} (۲۴) همسو است اما با نتایج لنگفورد و همکاران^{۱۵} (۲۵) و چن و همکاران^{۱۶} (۲۵) ناهمسو است.

مطالعه‌ای مبنی بر بررسی تاثیر تمرین بر سروتونین مغزی در آزمودنی‌های دیابتی مشاهده نشد اما مطالعات بر روی آزمودنی‌های سالم مانند مطالعه لنگفورد و چن، کاهش میزان سروتونین مغزی را بر اثر تمرینات ورزشی نشان می‌دهد (۲۵ و ۱۵). در مطالعه لیو استرس، تحریک دستگاه ایمنی و افزایش سایتوکاین‌های پیش‌التهابی باعث کاهش سروتونین قشر پیش‌پیشانی موش‌ها شده بود اما تمرین شنا باعث افزایش سروتونین موش‌های در معرض استرس

نتایج این مطالعه نشان داد که میزان سروتونین هیپوکامپ در گروه‌های کنترل سالم به طور معنی‌داری بیشتر از گروه کنترل دیابتی است که این نتایج با نتایج مطالعات ترولسون و همکاران^۱ (۱۷)، توره و همکاران^۲ (۱۸)، میاتا و همکاران^۳ (۱۹)، مانجارتز و همکاران^۴ (۲۰) همسو است اما با نتایج مطالعات حسین و همکاران^۵ (۲۱) ناهمسو می‌باشد. یاتا و همکاران نشان دادند که رهایش سروتونین ناشی از استرس‌های روانی در موش‌های دیابتی کاهش می‌یابد و این کاهش ممکن است مسئول مشکلات روانی در افراد دیابتی باشد (۱۹). ترولسون و همکاران نیز نشان دادند که دیابت ناشی از استروتیوزوتیوین باعث کاهش سروتونین مغزی موش‌ها شد (۱۷). در مطالعه توره دیابت باعث کاهش سروتونین ناحیه هیپوکامپ شد (۱۸). در مطالعه مانجارتز نیز سروتونین مغزی بر اثر القاء دیابت کاهش یافت (۲۰). اما نتایج مطالعه حسین و همکاران نشان داد که القاء دیابت با استروتیوزوتیوین در موش‌ها باعث افزایش میزان سروتونین مغزی موش‌ها شد که ناحیه مورد مطالعه در این تحقیق و تحقیق حسین و همکاران (کل مغز) و غذای مصرفی موش‌ها دیابتی (غذای استاندارد) متفاوت بود (۲۱).

به نظر می‌رسد کاهش تریپتوفان پلاسمای باعث کاهش تولید سروتونین در مغز موش‌های دیابتی می‌شود زیرا میزان تریپتوفان مغزی نسبت به سایر اسیدهای آمینه حساسیت بیشتری به تغییرات تریپتوفان پلاسمای و نسبت آن به اسیدهای آمینه پلاسمای دارد (۱۵). همچنین مطالعات نشان می‌دهند که التهاب ناشی از دیابت نوع ۲ باعث افزایش سایتوکاین‌های اینتلرولکین-۶^۶ و عامل نکروز

⁷ - Tumor necrosis factor – alpha (TNF-α)

⁸ - Indoleamine 2,3-dioxygenase (IDO)

⁹ - Kynurenone (KYN)

¹⁰ - TRP 2,3-dioxygenase (TDO)

¹¹ - Liu W et al 2013

¹² - Kim T W et al 2015

¹³ - Langford. J. et al 2006

¹⁴ - Chen et al 2007

¹ - Trulson et al 1986

² - Thorre K et al 1997

³ - Miyata S et al 2007

⁴ - Manjarrez G G et al 2015

⁵ - Hussein J et al 2012

⁶ - Interleukin-6 (IL-6)

^۶ C و کاهش پروتئین کیناز وابسته به کلسیم/کالmodولین^۷ می‌شوند. این عوامل سریعاً بر خاصیت کاتالیزی و فعالیت تریپتوфан هیدروکسیلاز تاثیر گذاشته می‌گذارند (۲۰). همچنین نتایج مطالعه حاضر نشان داد که میزان تریپتوファン هیدروکسیلاز هیپوکامپ در گروه تمرین به طور معنی‌داری بیشتر از گروه کنترل دیابتی است. نتایج این مطالعه با نتایج مطالعات کیم و همکاران (۲۴) همسو است اما با نتایج لنگفورد و همکاران (۱۵) ناهمسو است. در مطالعه هیدروکسیلاز در هسته رافه پشتی در اثر استرس، با تمرین شنا جبران می‌شود و باعث افزایش آن می‌گردد (۲۴). اما در مطالعه لنگفورد که بر روی موش‌های سالم انجام گرفته بود تمرین هوازی باعث کاهش میزان تریپتوファン هیدروکسیلاز در چندین ناحیه مغزی شد (۱۵). احتمالاً سازوکار کنترل تبدیل تریپتوファン به سروتونین در موش‌های سالم با دیابتی متفاوت است. در موش‌های سالم تمرین باعث کاهش تولید سروتونین از طریق کاهش میزان تریپتوファン هیدروکسیلاز می‌شود. اما در موش‌های دیابتی احتمالاً به علت کمتر بودن میزان سروتونین، تمرین باعث افزایش میزان تریپتوファン هیدروکسیلاز می‌گردد. کاهش گلوکز خون و کاهش گونه‌های آزاد اکسیژن از عواملی است که می‌تواند باعث افزایش تریپتوファン هیدروکسیلاز مغزی موش‌های دیابتی تمرین کرده باشد (۲۰).

نتیجه گیری

در افراد سالم میزان سروتونین در حد نرمال است و بالا رفتن میزان سروتونین باعث اثر مهاری و خستگی می‌شود و با تمرین می‌توان میزان سروتونین را کاهش داد. اما در افراد دیابتی میزان سروتونین کمتر از میزان مورد نیاز است و در نتیجه باعث احساس افسردگی می‌شود و با تمرین

مزمن شد (۲۳). همچنین در مطالعه کیم و همکاران نیز نشان داده شد که کاهش میزان سروتونین در هسته رافه پشتی در اثر استرس، با تمرین شنا جبران می‌شود و باعث افزایش سروتونین می‌گردد (۲۴). نشان داده شده است که در آزمودنی‌های دیابتی، فعالیت مزمن باعث کاهش التهاب سیستمیک و بافتی و کاهش سایتوکاین‌های IL-6 و TNF- α می‌شود (۲۶).

نتایج نشان داد که میزان تریپتوファン هیدروکسیلاز هیپوکامپ در گروه‌های دیابتی به طور معنی‌داری کمتر از گروه کنترل سالم است. این نتایج با نتایج مطالعات مانجارت و همکاران (۲۰)، هررا و همکاران^۱ (۲۷) و کیم و همکاران (۲۴) همسو است. در مطالعه مانجارت و همکاران، القاء دیابت با استروپتوزوتوسین باعث کاهش میزان تریپتوファン هیدروکسیلاز مغزی در موش‌ها شد (۲۰). در مطالعه هررا نیز دیابت باعث کاهش فعالیت تریپتوファン هیدروکسیلاز در چند ناحیه مغزی موش‌ها شد (۲۸). در مطالعه کیم نیز استرس باعث کاهش تریپتوファン هیدروکسیلاز در ناحیه هسته رافه پشتی شد (۲۴).

کاهش وابستگی تریپتوファン هیدروکسیلاز به سوبسترا در مغز موش‌های دیابتی اثبات شده است و احتمالاً پیامبر ثانویه‌ای مانند آدنوزین مونو فسفات حلقوی^۲، اینوزیتول تری فسفات^۳ و دی‌آسیل گلیسرول^۴ در فعالیت تریپتوファン هیدروکسیلاز دخیل هستند. همچنین محققان نشان داده‌اند که دیابت نوع ۲ باعث تغییر رفتار آنژیومی به علت تغییر سازوکار فسفریلاسیون سلولی می‌شود. سازوکاری که برای کاهش بیان پروتئین آنژیم تریپتوファン هیدروکسیلاز ذکر شده است در معرض حالت‌های اکسایشی قرار گرفتن و افزایش غلظت گلوکز مغزی می‌باشد که این عوامل باعث اختلال در پروتئین کیناز A^۵ و پروتئین کیناز

^۱ - Herrera et al 2004

^۲ - cyclic Adenosine Mono Phosphate (cAMP)

^۳ - Inositol triphosphate (IP3)

^۴ - Diacylglycerol (DAG)

^۵ - Protein kinase A

تقدیر و تشکر
با تشکر از مسئولان مرکز تحقیقات علوم اعصاب دانشگاه علوم پزشکی تبریز که برای اجرای این تحقیق نهایت همکاری را داشتند.

می‌توان این کاهش میزان سروتونین را بهبود داد. برای روشن شدن سازوکار تاثیر دیابت بر دستگاه سروتونینی مغزی و سایر شاخص‌های خونی موثر بر آن مانند تریپتوفان پلاسمما و همچنین تاثیر تمرین منظم بر عوارض دیابت بر دستگاه سروتونینی مغزی انجام مطالعات بیشتری ضروری به نظر می‌رسد.

Reference

1. Oxenkrug G F. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. *Mol Neurobiol* 2015; 52:805-810.
2. Cal'bria LK, Costa AV, Oliveira R J, Deconte SR, Rafael Nascimento R, Carvalho W J, and et al. Myosins are differentially expressed under oxidative stress in chronic streptozotocin-induced diabetic rat brains. *ISRN Neuroscience* 2013; 423931: 1-10.
3. Alipour M, Salehi2 I, Ghadiri Soufi F. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. *Iranian Red Crescent Medical Journal* 2012; 14:222-228.
4. Asghar S, Hussain A, Ali S M, Khan A K, Magnusson A. Prevalence of depression and diabetes: a population-based study from rural Bangladesh. *Diabet Med* 2007; 24:872– 877.
5. Khamseh ME, Baradaran HR, Rajabali H. Depression and diabetes in Iranian patients: a comparative study. *Int J Psychiatry* 2007; 37:81–86.
6. Li C, Ford ES, Zhao G, Ahluwalia IB, Pearson WS, Mokdad AH. Prevalence and correlates of undiagnosed depression among U.S. adults with diabetes: the behavioral risk factor surveillance system. *Diabetes Res Clin Pract* 2009; 83:268–279.
7. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. *Diabetes Care* 2001; 24: 1069–1078.
8. Haghigatdoost F, Azadbakht L. Dietary treatment options for depression among diabetic patient, focusing on macronutrients. *Journal of Diabetes Research* 2013; 421832: 1-10.
9. Zaki HF, Rizk HA. Role of serotonergic and dopaminergic neurotransmission in the antidepressant effects of malt extract. *Afr J Pharmacol* 2013; 7:2960-2971.
10. Kim TW, Lim BV, Baek D, Ryu DS, Seo JS. Stress-induced depression is alleviated by aerobic exercise through up-regulation of 5- Hydroxytryptamine 1A receptors in rats. *Int Neurorol J* 2015;19:27-33.
11. Lee H, Ohno M, Shigeo Ohta S, Mikami T. Regular moderate or intense exercise prevents depression-like behavior without change of hippocampal tryptophan content in chronically tryptophan-deficient and stressed mice. *J PLOS ONE* 2013 ; 8: e66996.
12. Roelands B, Meeusen R. Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. *Sports Med* 2010 ; 40:229 – 246.
13. Kim MH , Leem YH. Chronic exercise improves repeated restraint stress-induced anxiety and depression through 5HT1A receptor and cAMP signaling in hippocampus. *J Exerc Nutr Biochem* 2014;18:97-104.
14. Lin TW, Kuo YM. Exercise benefits brain function: the monoamine connection. *Brain Sci* 2013;3: 39-53.
15. Langfort J, Baran E, Pawlak D, Chalimoniuk M, Lukacova N, Marsala J,et al. The effect of endurance training on regional serotonin metabolism in the brain during early

stage of detraining period in the female rat. *Cellular and Molecular Neurobiology* 2006; 26:1327-1342.

16. Gilbert ER, Fu Z, Liu D. Development of a nongenetic mouse model of type 2 diabetes. *Experimental Diabetes Research* 2011; 416254:1-12.

17. rulson ME, Jacoby JH, MacKenzie RG. Streptozotocin-induced diabetes reduces brain serotonin synthesis in rats. *Journal of Neurochemistry* 1986 ; 46:1068-1072.

18. Thorre K. Differential effects of restraint stress on hippocampal 5-HT metabolism and extracellular levels of 5-HT in streptozotocin-diabetic rats . *Brain Research* 1997; 772: 209–216.

19. Miyata S, Yamada N, Hirano S, tanaka S I, Kamei J . Diabetes attenuates psychological stress-elicited 5-HT secretion in the prefrontal cortex but not in the amygdala of mice. *Brain Research* 2007; 1147:233–239.

20. Manjarrez GG, Neri-Gmez T, Herrera R, Antonio J, Herrera M, Montes AB, Hernandez J. Brain serotonergic disturbances caused by diabetes mellitus are not reversed by insulin treatment. *Global Advanced Research Journal of Medicine and Medical Science* 2015; 4 : 441-448.

21. Hussein J, Adoel-matty D, EL-Khayat Z, Abdel-Latif Y. Brain neurotransmitters in diabetic rats treated with coenzyme Q10. *International Journal of Pharmacy and Pharmaceutical Sciences* 2012; 4: 554-557.

22. Oxenkrug G. Insulin resistance and dysregulation of tryptophan kynurene and kynurene – nicotinamide adenine dinucleotide metabolic pathways. *Mol Neurobiol* 2013 Oct; 48: 294-301.

23. Liu W, Sheng H, Xu Y, Liu Y, Lu J, Ni X. Swimming exercise ameliorates depression-like behavior in chronically stressed rats: Relevant to proinflammatory cytokines and IDO activation. *Behavioural Brain Research* 2013; 242: 110–116.

24. Kim TW, Lim BV, Baek D, Ryu DS, Seo JS. Stress-induced depression is alleviated by aerobic exercise through up-regulation of 5- Hydroxytryptamine 1A receptors in rats. *Int Neurorol J* 2015;19:27-33.

25. Chen H I, Lin L C, Yu L, Liu U F, Kuo YM, Huang AM, et al. Treadmill exercise enhances passive avoidance learning in rats: The Neurobiology of Learning and Memory. *JNLM* 2007;89:489-96.

26. Martin S A, Dantzer R, Kelley K W, Woods J A. Voluntary Wheel Running Does not Affect Lipopolysaccharide - Induced Depressive-Like Behavior in Young Adult and Aged Mice. *Neuroimmunomodulation*. 2014 ; 21: 52–63.

27. Herrera R, Manjarrez G, Hernandez J. Inhibition and kinetic changes of brain tryptophan-5-hydroxylase during insulin-dependent diabetes mellitus in the rat. *Nutritional Neuroscience* 2005; 8: 57–62.