The effect of eight weeks of aerobic training on serotonin and tryptophan hydroxylase levels in hippocampus in type 2 diabetic rats

Amirsasan R., PhD¹, Dabbagh Nikokheslat S., PhD², Karimi P., PhD³, Esmaeili A., PhD Student⁴

- 1. Associate Professor of Exercise Physiology, Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
- 2. Assistant Professor of Exercise PhysiologyDepartment of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tabriz, Tabriz Iran.
- 3. Assistant Professor of Clinical Biochemistry. Neuroscience Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
- 4. PhD student of Exercise Physiology, Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tabriz, Tabriz Iran (Corresponding Author), Tel:+41-33393258, ameneh.esmaeili@yahoo.com

ABSTRACT

Backgrounds and Aim: Aerobic exercise has proven benefits in treating and reducing the incidence of complications of chronic diseases such as diabetes. In this study we evaluated the effect of aerobic training on serotonin and tryptophan hydroxylase levels in hippocampus in type 2 diabetic rats.

Materials and Methods: 30 rats were randomly divided into healthy control, diabetic control, exercise diabetic groups. 2^{nd} and 3^{rd} groups were made diabetic by intraperitoneal injection of streptozotocin (37mg/kg), two weeks after receiving high-fat diet. Groups of aerobic exercise performed treadmill exercise 5 times/ week for 8 weeks with duration and intensity of 55min /d and 26m/min respectively in the final weeks. 24 hours after the last exercise blood samples and hippocampus tissue samples were obtained and concentrations of serotonin (μ g/g) and tryptophan hydroxylase were measured by Elisa and western blotting methods respectively. We used ANOVA and Tukey post hoc test for data analysis.

Results: Statistical analysis showed that the diabetic group had significantly lower serotonin levels compared to the healthy control group (P=0.001) and exercise diabetic group (P=0.01). The mean tryptophan hydroxylase level of the diabetic groups were significantly lower than that of the healthy control group (P=0.001). The amount of tryptophan hydroxylase was significantly higher in the exercise diabetic group compared to that in the diabetic control group (P=0.001)

Conclusion: In this study, diabetes led to reduction of serotonin and tryptophan hydroxylase levels in the hippocampus. Also eight weeks of aerobic exercise increased tryptophan hydroxylase level in the hippocampus of the diabetic rats.

Key Words: Aerobic Training, Diabetes, Depression.

Received: Jun 29, 2016 **Accepted:** Jan 22, 2017

تاثیر هشت هفته تمرین هوازی بر سروتونین و تریپتوفان هیدروکسیلاز هیپوکامپ موشهای دیابتی نوع ۲

رامین امیرساسان'، سعید دباغ نیکوخصلت'، پوران کریمی"، آمنه اسماعیلی ً

۱. دانشیار فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، ایران.

۲.استادیار فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، ایران.

٣. استاديار بيوشيمي باليني، مركز تحقيقات علوم اعصاب، دانشگاه علوم پزشكي تبريز، تبريز، ايران.

۴.دانشـجوی دکتـری فیزیولـوژی ورزشـی، دانشـکده تربیـت بـدنی و علـوم ورزشـی، دانشـگاه تبریـز، ایـران (نویسـنده مسـئول) ، تلفـن ثابـت : ۴۱-۳۳۳۹۳۲۵۸ ameneh.esmaeili@yahoo.com

چکیده

زمینه و هدف: تمرینات هوازی مزایای ثابت شدهای در درمان و کاهش عوارض بیماریهای مزمن از جمله دیابت دارند. در این تحقیق قصد داریم تا تاثیر تمرین هوازی بر سروتونین و تریپتوفان هیدروکسیلاز ناحیه هیپوکامپ موشهای دیابتی نوع ۲ را بررسی نماییم.

روش بررسی: ۳۰ موش صحرایی نر به طور تصادفی به ۳ گروه ۱-کنترل سالم ۲-کنترل دیابتی ۳- تمرین دیابتی تقسیم بندی شدند. گروههای ۲و ۳ برای دیابتی شدن دو هفته پس از غذای پرچرب با تزریق درون صفاقی، استرپتوزوتوسین (۳۷ mg/kg) دریافت کردند. گروههای تمرین هوازی ۵ جلسه در هفته و ۸ هفته بر روی نوار گردان با مدت و شدتی که در هفته های پایانی به ترتیب به 100 min/d می رسید، دویدند. ۲۴ ساعت بعد از آخرین تمرین، نمونه خونی و بافت هیپوکامپ موشها استخراج شد و غلظت سروتونین 100 آن به روش الایزا و غلظت تریپتوفان هیدروکسیلاز آن به روش وسترن بلاتینگ اندازه گیری شد.

یافته ها: نتایج نشان داد که میزان سروتونین در گروه کنترل دیابتی به طور معنی داری کمتر از گروه کنترل سالم $(P=/\cdot\cdot\cdot)$ و تمرین دیابتی به طور معنی داری کمتر از گروه کنترل تمرین دیابتی به طور معنی داری کمتر از گروه کنترل سالم بود $(P=/\cdot\cdot)$. همچنین نتایج نشان داد که میزان تریپتوفان هیدرو کسیلاز در گروه تمرین دیابت به طور معنی دار بیشتر از گروه کنترل دیابتی بود $(P=/\cdot\cdot)$.

نتیجه گیری: در این مطالعه دیابت باعث کاهش سروتونین و تریپتوفان هیدروکسیلاز ناحیه هیپوکامپ شـد. همچنین هشت هفته فعالیت هوازی باعث افزایش سروتونین و تریپتوفان هیدروکسیلاز هیپوکامپ موشهای دیابتی شد.

کلید واژهها: تمرین هوازی ، دیابت، افسردگی

وصول مقاله : ۹۵/۴/۸ اصلاحیه نهایی:۹۵/۱۰/۱۲ پذیرش:۹۵/۱۱/۲

مقدمه

دیابت ملیتوس بیماری خود مراقبتی است که بیش از ۳۵۰ میلیون نفر را در سراسر جهان درگیر کرده است (۱) دیابت ملیتوس با مشخصه افزایش قند خون به علت نقص در ترشح انسولین و یا تاثیر انسولین به علت مقاومت به انسولین، شناخته می شود (۲) و عوارضی مانند بیماری های قلبی، کلیوی و بسیاری از بیماریهای دستگاه عصبی محیطی و مرکزی دارد. بیماری های عصبی می توانند عوارض ناتوان کننده داشته باشند و بر ناحیه های حساس مغز مانند هییو کامپ تاثیر داشته باشند. نقص در هییو کامپ منجر به اختلال در حافظه و یادگیری می شود و یکی از عوارض دیابت بر سیستم عصبی مرکزی می باشد (۳). از طرف دیگر بر طبق مطالعات اصغر و همکاران (۴) خامش و همكاران (۵) و لى و همكاران (۶) افسرد كي يك مشكل شايع بين بيماران مبتلا به ديابت نوع ١ و ٢ مي باشد. خطر بروز علائم افسردگی در بین افراد مبتلا به دیابت دو برابر بیشتر از افراد غیر دیابتی مستقل از جنس و نوع دیابت و نحوه اندازه گیری، است (۷). سازو کارهای اصلی ارتباط بین دیابت و افسردگی تغییر پیام رسانی انسولین در مغز ، فعال سازی مسیرهای پیش التهابی و تنظیم مثبت سیستم-های هورمونی شبه گلوکوکورتیکودیدی میباشد. مکانیسم دیگر تاثیر سبک زندگی می باشد (۸). زاکی و همکاران^۴ نشان دادند که کاهش سروتونین مغزی از عوامل ایجاد افسردگی مغزی در موشها شد (۹) و کیم و همکاران^۵ بیان کردند که تحمیل شرایط افسردگی زا در موشها باعث کاهش سروتونین مغزی می شود (۱۰). در سبب شناسی افسردگی تخلیه سروتونین ٔ از عوامل نروبیولوژیکی می باشد. عوامل مختلفی باعث اختلال در دستگاه سروتونین میشود که از میان آنها میتوان به

کاهش تریپتوفان پلاسما و کاهش تولید سروتونین اشاره کرد (۱۱). آنزیم تریپتوفان هیدروکسیلاز باعث ساخت سروتونین از تریپتوفان میشود بنابراین به عنوان آنزیم کلیدی و محدود کننده در ساخت سروتونین مغزی شناخته میشود (۱۲) بنابراین می تواند یکی از عوامل موثر بر کاهش ساخت سروتونین در مغز باشد.

چگالی بالایی از گیرنده 1A سروتونین در جایگاه پس سیناپسی هیپوکامپ وجود دارد. از آنجایی که اعصاب سروتونینی در هیپوکامپ هم از نواحی خلفی و هم از نواحی میانی هستههای رافه سرچشمه می گیرند و نسبت به تغییرات دستگاه سروتونینی بسیار حساس میباشد. تصور می شود که گیرندههای H_{-} موجود در هیپوکامپ نقش موثری در بروز رفتارهای افسردگی دارند (۱۳). در عین حال مطالعات زیادی بر روی دستگاه سروتونینی ناحیه هیپوکامپ و به ویژه تاثیر دیابت بر این دستگاه، صورت نگرفته است.

فعالیت بدنی منظم مزایای درمانی ثابت شدهای مثل معالجه بیماری های روانی، تقویت بهبودی آسیب مغزی و بیماریهای مقاوم تخریب کننده عصبی میباشد. تنظیم عوامل وابسته به عروق، واسطه عملی التهابی و انتقال دهنده های عصبی در تاثیر فعالیت بر عملکرد مغزی در گیر هستند. در میان این تاثیرات ترشح انتقال دهنده های عصبی به خصوص مونو آمین ها به انتقال دهنده های عصبی به خصوص مونو آمین ها به ساز گاری های ناشی از فعالیت وابسته است (۱۴). بنابراین به نظر می رسد عوامل مختلفی مانند نوع فعالیت، مدت فعالیت و عوامل محیطی بر عملکرد تاثیر بگذارند (۱۲). مطالعات نشان می دهد که کاهش میزان سرو تونین در برخی نواحی مغزی در اثر ساز گاری های ناشی از تمرینات برخی نواحی مغزی در اثر ساز گاری های ناشی از تمرینات تریپتوفان در موشهای تمرین کرده نشان می دهد که تریپتوفان در موشهای تمرین کرده نشان می دهد که کاهش سرو تونین مغزی ناشی از تمرین ممکن است در کاهش سرو تونین مغزی ناشی از تمرین ممکن است در

¹ - Asghar S et al 2007

² - Khamesh M E et al 2007

³ - Li C et al 2009

⁴ - Zaki H F et al 2013

^{5 -} Kim T W at al 2015

⁶ - 5-Hydroxy Triptamin (5-HT)

⁷ - Tryptophan hydroxylase (TPH)

⁸ - Serotonin 1A receptor (5-HT1A)

اثر کاهش بیان تریپتوفان هیدروکسیلاز که آنزیم محدود کننده ساخت سروتونین است، باشد. یافتهها کاهش میزان تریپتوفان هیدروکسیلاز قشر مغز و جسم مخطط مغز در موشهای تمرین کرده را نشان میدهند. این کاهش میزان تریپتوفان هیدروکسیلاز می تواند ناشی از کاهش تولید و یا افزایش تجزیه پروتئین آن باشد (۱۵). درباره تاثیر تمرین منظم بر دستگاه سروتونینی در بیماری دیابت مطالعهای مشاهده نشد و انجام مطالعاتی برای شناخت تاثیر فعالیت بدنی بر دستگاه سروتونینی افراد مبتلا به دیابت ضروری به نظر می رسد.

لذا، به دلیل نامشخص بودن تاثیر تمرین بر دستگاه سروتونینی هیپوکامپ افراد مبتلا به دیابت، در این تحقیق تاثیر هشت هفته تمرین هوازی متوسط را بر سروتونین و تریپتوفان هیدروکسیلاز هیپوکامپ موشهای دیابتی نوع۲ بررسی نمودیم.

روش بررسي

تحقیق حاضر از نوع تجربی و طرح پس آزمون با گروه کنترل و از نظر هدف پژوهش، بنیادی - کاربردی می باشد. به علت عدم امکان انجام این تحقیق بر روی آزمودنیهای انسانی در این تحقیق از موشهای صحرایی نر سفید نژاد ویستار (n٫٫۰۰۰) با سن حدود ۶ ماهگی در محدوده وزنی ۲۲۵ الی ۳۰۰ گرم استفاده گردید. ابتدا، موشهای صحرایی به طور تصادفی به ۳ گروه مستقل ۱-کنترل سالم ۲-کنترل دیابتی ۳- تمرین هوازی تقسیمبندی شدند و در هر گروه ۱۰ موش صحرایی قرار گرفت. تمام حیوانات در آزمایشگاه حیوانات در یک محیط کم استرس (دمای $^{\circ}$ ۲۲-۲۲ ، رطوبت $^{\circ}$ درصد و کم سر و صدا) و سیکل روشنایی - تاریکی ۱۲ ساعته به صورت انفرادی در هر قفس نگهداری شدند. ضمناً حیوانات آزادانه به آب لوله کشی و غذای فشرده مخصوص موش (شرکت خوراک دام پارس) به مدت دو ماه و ۲ هفته دسترسی داشتند. به منظور ایجاد حالت سازش با محیط،

تمامی مداخلات پس از گذشت حداقل دو هفته استقرار حیوانات و در آغاز سیکل شبانه (ساعت ۱۹) در آزمایشگاه حیوانات به انجام رسید. در این بررسی از آن دسته موشهای صحرایی استفاده گردید که در شرایط طبیعی بدون برقراری حالت روزهداری، میزان گلوکز سرم آنها پائین تر از حد ۲۵۰ mg/dl باشد. فرایند کار با موشهای صحرایی در این تحقیق در کمیته اخلاق کار با حیوانات دانشگاه علوم پزشکی تبریز به تأیید رسید.

بعد از گذشت ۲ هفته سازگاری با محیط آزمایشگاه، برای دیابتی کردن نمونههای دیابتی ۲ هفته مصرف غذای پرچرب (۵۰ درصد چربی، ۲۵٪ پروتئین و ۲۵ درصد کربوهیدرات که توسط محققان و با همکاری شرکت کانی دام تهیه شد) و سپس تزریق درون صفاقی دوز پایین استرپتوزوتوسین (۳۷mg/kg) در بافر سیترات ۱۱، مولار (۴/۵ PH) بعد از ۶ ساعت ناشتایی اعمال گردید. برای گروه شاهد همان میزان بافر ترزیق شد. ۷۷ ساعت بعد از تزریق دارو، گلوکز نمونه خونی از ورید دمی حیوان با استفاده از گلوکومتر قابل حمل بررسی شد و غلظت گلوکز بالاتر از گلوکومتر قابل حمل بررسی شد و صحرایی دیابتی وارد تحقیق شدند.

تمرین هوازی: گروههای تمرین هوازی ۵ جلسه در هفته و Λ هفته بر روی نوارگردان موتوردار دویدند. در ابتدا، موشهای صحرایی به مدت ۱۰دقیقه در روز و با سرعت ۱۰ متر در دقیقه و با شیب ۶درجه (۱۰٪) تمرین خود را آغاز کردند(هفته اول). سرعت و مدت تمرین بتدریج در طول ۳ هفته بعد افزایش یافت تا اینکه در هفتههای پایانی مدت و شدت تمرین به ترتیب به ۵۵ دقیقه در روز و ۲۶ متر در دقیقه رسید. مطابق تحقیقات گذشته، شاخصهای متر در دقیقه رسید. مطابق تحقیقات گذشته، شاخصهای خستگی مرکزی با شدتهای تمرینی در حد ۱۹ متر در دقیقه به مدت ۱ ساعت در ۸ هفته (۱۳) و یا ۱۶ متر در دقیقه به صورت فزاینده تا ۲۸ متر در دقیقه در ۶ هفته نیز دقیقه به صورت فزاینده تا ۲۸ متر در دقیقه در ۶ هفته نیز گزارش شده است (۱۵ و ۱۳).

اندازه گیری سروتونین و تریپتوفان هیدروکسیلاز: Υ ۲۴ ساعت بعد از آخرین جلسه تمرینی (Υ 10 او Υ 1۱)، گروه تمرین دیابتی ، موشهای صحرایی موجود در همه گروه ها بوسیله تزریق درون صفاقی کتامین (Υ 10 میلی گرم بر کیلو گرم) و زایلازین (Υ 10 میلی گرم بر کیلو گرم) بی هوش و سپس جراحی شدند و ناحیه هیپوکامپ آنها بلافاصله استخراج و در نیتروژن Υ 10 - منجمد و برای بررسی و استخراج و در نیتروژن Υ 10 - منجمد و برای بررسی و یا بعدی نگهداری شد. همچنین نمونه سرمی و پلاسمایی نیز از همه حیوانات به دست آمد. بنابراین همه دادههای به دست آمده از گروههای در این مطالعه به صورت پس آزمون می باشد.

نمونههای مغزی منجمد شده در بافر هموژن کننده زیر صفر درجه (۱:۲۰ xa mM (wt/vol ۱:۲۰ هپس، ۲۵ mM (wt/vol ۱:۲۰) ساکاروز ۱۰/۰ درصد تریتون ۲۵۰ هپار کننده پروتئاز کاکتیل و یک قرص کامل ۸۰ mM مهار کننده پروتئاز کاکتیل (Roche)، V/F (Roche) هموژن شد. مواد هموژن شده به مدت ۲۵ دقیقه با سرعت V/F (۱۵۰۰۰ و شد. غلظت سروتونین به روش الایزا با کیت سروتونین (حساسیت V/F ng/mL شرکت کریستال دی بیوتک اندازه گیری شد.

الکتروفورز ژل (و وسترن بلاتینگ (ایروتئین (۳۰ μ g) نمونههای هموژن شده بوسیله الکتروفورز ژل سدیم دودسیل سولفات -پلی اکریلامید (صفحه SDS) با استفاده ژل حل کننده λ (۵/۵ (λ فسفو و تام)، جدا گردید. پروتئینهای جدا شده بوسیله صفحه SDS به صورت الکتروفوریک به غشای پلی وینیلیدیم دی فلوراید منتقل شده و غشا با آنتی بادی مونو کلونال مورین آنتی - تریپتوفان هیدرو کسیلاز (ایک طول شب در دمای λ (انکوبه شد. کمپلکس آنتی بادی - تریپتوفان هیدرو کسیلاز به مدت (۱ ساعت در دمای اتاق ضد رت بُزی IgG

انکوبه شد. و سپس با روش کمی لومینسانس واستفاده از فیلم رادیوگرافی به ظهور رسیدند. دانسیته باندها توسط نرم افزار Image J اندازه گیری شد و سپس در مقابل باند بتا اکتین نرمالیزه شدند تا میزان تریپتوفان هیدروکسیلاز به دست آید. آنتی بادی تریپتوفان هیدروکسیلاز از شرکت سانتاکروز^{۱۳} تهیه شد. حساسیت این روش در حد ۱۰۰ pg/mL

اندازه گیری شاخص های دیابتی: بعد از جمع آوری نمونه های سرمی و پلاسمایی، اندازه گیری میزان گلوکز سرم بر حسب میلی گرم بر دسی لیتر سرم توسط روش آنزیمی گلوکزاکسیداز (زیست شیمی) انجام گردید. بعلاوه، تعیین غلظت انسولین پلاسما به روش الایزا با استفاده از کیت انسولین پلاسما به روش الایزا با استفاده از کیت انسولین (۱/۱۵ ۱۹/۱۵) شرکت کریستال دی بیوتک سنجیده شد.

روش تجزیه و تحلیل آماری: برای تجزیه و تحلیل آماری از آمار توصیفی به صورت میانگین \pm انحراف استاندارد استفاده شد. برای بررسی تفاوتهای بین گروههای مستقل بعد از اطمینان از نرمال بودن دادهها با استفاده از آزمون کلموگروف - اسمیرنف از طرح آزمون آنالیز واریانس یک راهه و آزمون تعقیبی تو کی در سطح معنی داری کمتر از 1.0 تحت نسخه ۱۸ نرم افزار آماری SPSS استفاده گردید این آزمون برای اندازه گیری یک صفت کمی در سه یا بیش از سه گروه مستقل مورد استفاده قرار می گیرد.

بافتهها

در این بخش نتایج تحقیق به صورت متمرکز در جدول ۱ آورده شده است و در ادامه به بررسی تفاوت ها پرداخته شده است.

⁹ - Crystal day Biotech

¹⁰ - Gel Electrophoresis

¹¹ - Western Blotting

¹² - Monoclonal murine anti-TpH

¹³ - Santa Cruz

آنالیز آماری نشان می دهد که بین گروههای سه گانه میزان $P = 9/0/7/8 = (F_{(Y_{(1)})})$ گلو کز سرمی $P = P_{(X_{(1)})} = P_{(X_{(1)})}$ انسولین سرمی $P_{(X_{(1)})} = P_{(X_{(1)})} = P_{(X_{(1)})}$ و تریپتوفسان سروتونین $P_{(X_{(1)})} = P_{(X_{(1)})} = P_{(X_{(1)})}$ و تریپتوفسان هیدرو کسیلاز $P_{(X_{(1)})} = P_{(X_{(1)})} = P_{(X_{(1)})} = P_{(X_{(1)})}$ هیپو کامپ تفاوت معنی داری وجود دارد. آزمون تعقیبی تو کی نیز نشان می دهد که بین گروههای $P_{(X_{(1)})} = P_{(X_{(1)})}$ نشان می دهد که بین گروههای $P_{(X_{(1)})} = P_{(X_{(1)})}$

جدول ۱: میزان گلوگز و انسولین سرمی و سروتونین هیپوکامپ

_			
	كنترل سالم	كنترل ديابت	ديابت تمرين
گلوکز mg/ml			
میانگین	17 4 ±18	* * 4 4 * 4 4 5	#1 v ۵±۵ v
$\mu U/L$ انسولین			
ميانگين	۵/۱±۰/۴	* ٣/ \$ ± • /۵	* ٣/۶± \/٣
سروتونین (μg/g)			
ميانگين	·/۴v±·/·١	* ·/۴Y±·/· \	# ٠/ ۴۶±٠/٠٢
تريپتوفان هيدروكسيلاز			
میانگین	۱ ±٠/٠٠	* · ·/v۲± ·/· ۲	#* · ·/ʌタ± ·/ · ١

* نشان دهنده تفاوت معنى دار با گروه كنترل سالم است. #نشان دهنده تفاوت معنى دار با گروه كنترل ديابت است.

ىجىش

در این تحقیق نشان داده شده که میزان گلوکز سرمی در گروههای دیابتی بیشتر از گروه کنترل سالم میباشد و در گروه کنترل دیابتی این تفاوت معنی دار بود که این نشان-دهنده افزایش گلوکز سرمی به علت القاء دیابت در موشها میباشد. همچنین میزان گلوگز سرمی در گروه تمرین دیابت با گروه کنترل سالم تفاوت معنی داری ندارد اما به طور معنی داری کمتر از گروه کنترل دیابتی است که نشان می دهد تمرین باعث بهبود افزایش گلوکز ناشی از القاء دیابت شده است. میزان انسولین سرمی در گروه کنترل سالم به طور معنی داری بالاتر از گروههای دیابتی کنترل سالم به طور معنی داری بالاتر از گروههای دیابتی

بود که نشان می دهد که القای دیابت نوع ۲ باعث کاهش انسولین سرمی نیز می شود.

در مدل دیابتی مورد مطالعه در این تحقیق از روش تزریق یک بار استروپتوزوتوسین با دوز mg/kg ۲۷ در هر کیلوگرم با رژیم غذایی پرچرب استفاده شده است که مطالعات نشان می دهند در این مدل باعث القای دیابت نوع۲ می شود و میزان انسولین با گروه کنترل تفاوت معناداری ندارد و سلولهای بتای پانکراس تخریب نمی-شوند اما میزان حساسیت به انسولین در گیرنده های انسولین یایین می آید (۱۶).

نتایج این مطالعه نشان داد که میزان سروتونین هیپوکامپ در گروههای کنترل سالم به طور معنی داری بیشتر از گروه كنترل ديابتي است كه اين نتايج با نتايج مطالعات ترولسون و همکاران (۱۷)، توره و همکاران (۱۸)، میاتا و همکاران (۱۹)، مانجارز و همکاران (۲۰) همسو است اما با نتایج مطالعات حسین و همکاران^۵ (۲۱) ناهمسو می باشد. یاتا و همکاران نشان دادند که رهایش سروتونین ناشی از استرسهای روانی در موشهای دیابتی کاهش می یابد و این کاهش ممکن است مسئول مشکلات روانی در افراد دیابتی باشد (۱۹). ترولسون و همکاران نیز نشان دادند که دیابت ناشی از استروتوزوتوسین باعث کاهش سروتونین مغزی موشها شد (۱۷). در مطالعه توره دیابت باعث کاهش سروتونین ناحیه هیپوکامپ شد (۱۸). در مطالعه مانجارز نیز سروتونین مغزی بر اثر القاء دیابت كاهش يافت (٢٠). اما نتايج مطالعه حسين و همكاران نشان داد که القاء دیابت با استروپتوزوتوسین در موشها باعث افزایش میزان سروتونین مغزی موشها شد که ناحیه مورد مطالعه در این تحقیق و تحقیق حسین و همکاران (کل مغز) و غذای مصرفی موشها دیابتی (غذای استاندار د) متفاو ت یو د (۲۱).

به نظر می رسد کاهش تریپتوفان پلاسما باعث کاهش تولید سروتونین در مغز موشهای دیابتی می شود زیرا میزان تریپتوفان مغزی نسبت به سایر اسیدهای آمینه حساسیت بیشتری به تغییرات تریپتوفان پلاسما و نسبت آن به اسیدهای آمینه پلاسما، دارد (۱۵). همچنین مطالعات نشان می دهند که التهاب ناشی از دیابت نوع ۲ باعث افزایش سایتو کاینهای اینترلوکین -۶ و عامل نکروز

دهنده تومور آلفا می شود و این سایتو کاین ها با افزایش فعالیت آنزیم ایندول آمین و استوکاسیژناز در مغز باعث تغییر مسیر متابولیسم تریپتوفان و کاهش تولید سروتونین و افزایش تولید کاینیورنین در مغز می شود. فعال کردن آنزیم تریپتوفان و کاهش استرس نیز مسیر دیگری برای کاهش ساخت سروتونین و افزایش ساخت کاینورینین در مغز می باشد. کاهش سروتونین و متابولیتکاینورینین در مغز می باشد. کاهش سروتونین و متابولیت و ریتم بیولوژیکی و اختلال عصبی مشاهده شده در و ریتم بیولوژیکی و اختلال عصبی مشاهده شده در افسردگی می شود. تنظیم مثبت KYN هم باعث اختلالات اکسیدانی و شناختی که مشخصا بر افسردگی اختلالات اکسیدانی و شناختی که مشخصا بر افسردگی تاثیر دارد، می شود (۲۲).

میزان سروتونین هیپوکامپ گروه تمرین دیابتی به طور معنی داری بیشتر از گروه کنترل دیابتی بود و تفاوت میزا سروتونین هیپوکامپ گروه کنترل سالم و تمرین دیابتی معنی دار نمی باشد. این یافته ها با نتیجه مطالعات لیو و همکاران (۲۳) و کیم و همکاران (۲۴) همسو است اما با نتایج لنگفورد و همکاران (۱۵) و چن و همکاران (۱۵) با نتایج لنگفورد و همکاران (۱۵) و چن و همکاران (۲۵) ناهمسو است.

مطالعه ای مبنی بر بررسی تاثیر تمرین بر سروتونین مغزی در آزمودنی های دیابتی مشاهده نشد اما مطالعات بر روی آزمودنی های سالم مانند مطالعه لنگفورد و چن، کاهش میزان سروتونین مغزی را بر اثر تمرینات ورزشی نشان می دهد (۲۵و ۱۵). در مطالعه لیو استرس، تحریک دستگاه ایمنی و افزایش سایتوکاین های پیش التهابی باعث کاهش سروتونین قشر پیش پیشانی موش ها شده بود اما تمرین شنا باعث افزایش سروتونین موش های در معرض استرس

⁷ - Tumor necrosis factor – alpha (TNF-a)

⁸ - Indoleamine 2,3-dioxygenase (IDO)

⁹ - Kynurenine (KYN)

¹⁰ - TRP 2,3-dioxygenase (TDO)

^{11 -} Liu W et el 2013

¹² - Kim T W et al 2015

¹³ - Langfort. J. et al 2006

¹⁴ - Chen et al 2007

¹ - Trulson et al 1986

² - Thorre K et al 1997

³ - Miyata S et al 2007

^{4 -} Manjarrez G G et al 2015

⁻ Hussein J et al 2012

⁶ - Interleukin-6 (IL-6)

مزمن شد (۲۳). همچنین در مطالعه کیم و همکاران نیز نشان داده شد که کاهش میزان سروتونین در هسته رافه یشتی در اثر استرس، با تمرین شنا جبران می شود و باعث افزایش سروتونین می گردد (۲۴). نشان داده شده است که در آزمودنیهای دیابتی، فعالیت مزمن باعث کاهش التهاب سیستمیک و بافتی و کاهش سایتو کاینهای IL-6 و TNF-α می شود (۲۶).

نتایج نشان داد که میزان ترییتوفان هیدروکسیلاز هیپوکامپ در گروههای دیابتی به طور معنیداری کمتر از گروه كنترل سالم است. اين نتايج با نتايج مطالعات مانجارز و همکاران (۲۰)، هررا و همکاران (۲۷) و کیم و همکاران (۲۴) همسو است. در مطالعه مانجارز و همكاران، القاء ديابت با استرويتوزوتوسين باعث كاهش میزان تریپتوفان هیدروکسیلاز مغزی در موشها شد (۲۰). در مطالعه هررا نيز ديابت باعث كاهش فعاليت تريپتوفان هیدروکسیلاز در چند ناحیه مغزی موشها شد (۲۸). در مطالعه كيم نيز استرس باعث كاهش تريپتوفان هیدرو کسیلاز در ناحیه هسته رافه پشتی شد (۲۴).

کاهش، وابستگی ترییتوفان هیدروکسیلاز به سوبسترا در مغز موشهای دیابتی اثبات شده است و احتمالا پیامبر ثانویهای مانند آدنوزین مونو فسفات حلقوی ، اینوزیتول تری فسفات و دی آسیل گلیسرول ٔ در فعالیت تریپتوفان هيدروكسيلاز دخيل هستند. همچنين محققان نشان دادهاند که دیابت نوع۲ باعث تغییر رفتار آنزیمی به علت تغییر سازوكار فسفريلاسيون سلولي مي شود. سازوكاري كه برای کاهش بیان پروتئین آنزیم تریپتوفان هیدروکسیلاز ذکر شده است در معرض حالتهای اکسایشی قرار گرفتن و افزایش غلظت گلوکز مغزی می باشد که این عوامل باعث اختلال در پروتئین کیناز 0 و پروتئین کیناز

 $^{\mathsf{v}}$ و کاهش پروتئین کیناز وابسته به کلسیم/کالمو دولین $^{\mathsf{c}}$ می شوند. این عوامل سریعا بر خاصیت کاتالیزی و فعالیت تربيتوفان هيدروكسيلاز تاثير گذاشته مي گذارند (٢٠).

همچنین نتایج مطالعه حاضر نشان داد که میزان ترییتوفان هیدروکسیلاز هییوکامپ در گروه تمرین به طور معنی-داری بیشتر از گروه کنترل دیابتی است. نتایج این مطالعه با نتایج مطالعات کیم و همکاران (۲۴) همسو است اما با نتایج لنگفورد و همکاران (۱۵) ناهمسو است. در مطالعه کیم و همکاران نشان داده شد که کاهش میزان ترییتوفان هیدروکسیلاز در هسته رافه پشتی در اثر استرس، با تمرین شنا جبران می شود و باعث افزایش آن می گردد (۲۴). اما در مطالعه لنگفورد که بر روی موشهای سالم انجام گرفته بود تمرین هوازی باعث کاهش میزان تریپتوفان هیدروکسیلاز در چندین ناحیه مغزی شد (۱۵). احتمالا سازو کار کنترل تبدیل تریپتوفان یه سروتونین در موش-های سالم با دیابتی متفاوت است. در موشهای سالم تمرین باعث کاهش تولید سروتونین از طریق کاهش میزان تریپتوفان هیدروکسیلاز می شود. اما در موشهای ديابتي احتمالاً به علت كمتر بودن ميزان سروتونين، تمرين باعث افزایش میزان ترییتوفان هیدرو کسیلاز می گردد.

کاهش گلوکز خون و کاهش گونههای آزاد اکسیژن از عواملی است که می تواند باعث افزایش تریپتوفان هیدروکسیلاز مغزی موشهای دیابتی تمرین کرده باشد .(۲٠).

نتيجه گيري

در افراد سالم میزان سروتونین در حد نرمال است و بالا رفتن میزان سروتونین باعث اثر مهاری و خستگی می شود و با تمرین می توان میزان سروتونین را کاهش داد. اما در افراد دیابتی میزان سروتونین کمتر از میزان مورد نیاز است و در نتیجه باعث احساس افسردگی می شود و با تمرین

⁻ Herrera et al 2004

⁻ cyclic Adenosine Mono Phposphate (cAMP)

⁴ - Diacylglycerol (DAG)

⁵ - Protein kinase A

⁶ - Protein kinase C

⁷ - Calcium/calmodulin dependent protein kinase

³ - Inositol triphosphate (IP3)

تقدير و تشكر

با تشکر از مسئولان مرکز تحقیقات علوم اعصاب دانشگاه علوم پزشکی تبریز که برای اجرای این تحقیق نهایت همکاری را داشتند.

می توان این کاهش میزان سروتونین را بهبود داد. برای روشن شدن سازوکار تاثیر دیابت بر دستگاه سروتونینی مغزی و سایر شاخصهای خونی موثر بر آن مانند تریپتوفان پلاسما و همچنین تاثیر تمرین منظم بر عوارض دیابت بر دستگاه سروتونینی مغزی انجام مطالعات بیشتری ضروری به نظر می رسد.

Reference

- 1. Oxenkrug G F. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. Mol Neurobiol 2015; 52:805-810.
- 2. Cal?bria LK, Costa AV, Oliveira R J, Deconte SR, Rafael Nascimento R, Carvalho W J, and et al. Myosins are differentially expressed under oxidative stress in chronic streptozotocin-induced diabetic rat brains. ISRN Neuroscience 2013; 423931: 1-10.
- 3. Alipour M, Salehi2 I, Ghadiri Soufi F. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus.Iranian Red Crescent Medical Journal 2012; 14:222-228.
- 4. Asghar S, Hussain A, Ali S M, Khan A K, Magnusson A. Prevalence of depression and diabetes: a population-based study from rural Bangladesh. Diabet Med 2007; 24:872–877.
- 5. Khamseh ME, Baradaran HR, Rajabali H. Depression and diabetes in Iranian patients: a comparative study. Int J Psychiatry 2007; 37:81–86.
- 6. Li C, Ford ES, Zhao G, Ahluwalia IB, Pearson WS, Mokdad AH. Prevalence and correlates of undiagnosed depression among U.S. adults with diabetes: the behavioral risk factor surveillance system. Diabetes Res Clin Pract 2009; 83:268–279.
- 7. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 2001; 24: 1069–1078.
- 8. Haghighatdoost F, Azadbakht L. Dietary treatment options for depression among diabetic patient, focusing on macronutrients. Journal of Diabetes Research 2013; 421832: 1-10.
- 9. Zaki HF, Rizk HA. Role of serotonergic and dopaminergic neurotransmission in the antidepressant effects of malt extract. Afr J Pharmacol 2013; 7:2960-2971.
- 10. Kim TW, Lim BV, Baek D, Ryu DS, Seo JS. Stress-induced depression is alleviated by aerobic exercise through up-regulation of 5- Hydroxytryptamine 1A receptors in rats. Int Neurourol J 2015;19:27-33.
- 11. Lee H, Ohno M, Shigeo Ohta S, Mikami T. Regular moderate or intense exercise prevents depression-like behavior without change of hippocampal tryptophan content in chronically tryptophan-deficient and stressed mice. J PLOS ONE 2013; 8: e66996.
- 12. Roelands B, Meeusen R. Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med 2010; 40:229 246.
- 13. Kim MH, Leem YH. Chronic exercise improves repeated restraint stress-induced anxiety and depression through 5HT1A receptor and cAMP signaling in hippocampus. J Exerc Nutr Biochem 2014;18:97-104.
- 14.Lin TW, Kuo YM. Exercise benefits brain function: the monoamine connection. Brain Sci 2013;3: 39-53.
- 15. Langfort J, Baran E, Pawlak D, Chalimoniuk M, Lukacova N, Marsala J, et al. The effect of endurance training on regional serotonin metabolism in the brain during early

- stage of detraining period in the female rat. Cellular and Molecular Neurobiology 2006; 26:1327-1342.
- 16.Gilbert ER, Fu Z, Liu D. Development of a nongenetic mouse model of type 2 diabetes. Experimental Diabetes Research 2011; 416254:1-12.
- 17.rulson ME, Jacoby JH, MacKenzie RG. Streptozotocin-induced diabetes reduces brain serotonin synthesis in rats. Journal of Neurochemistry 1986; 46:1068-1072.
- 18. Thorre K. Differential effects of restraint stress on hippocampal 5-HT metabolism and extracellular levels of 5-HT in streptozotocin-diabetic rats. Brain Research 1997; 772: 209–216.
- 19.Miyata S, Yamada N, Hirano S, tanaka S I, Kamei J. Diabetes attenuates psychological stress-elicited 5-HT secretion in the prefrontal cortex but not in the amygdala of mice. Brain Research 2007; 1147:233–239.
- 20.Manjarrez GG, Neri-G?mez T, Herrera R, Antonio J, Herrera M, Montes AB, Hernandez J. Brain serotonergic disturbances caused by diabetes mellitus are not reversed by insulin treatment. Global Advanced Research Journal of Medicine and Medical Science 2015; 4:441-448.
- 21. Hussein J, Adoel-matty D, EL-Khayat Z, Abdel-Latif Y. Brain neurotransmitters in diabetic rats treated with coenzime Q10. International Journal of Pharmacy and Pharmaceutical Sciences 2012; 4: 554-557.
- 22.Oxenkrug G. Insulin resistance and dysregulation of tryptophan kynurenine and kynurenine nicotinamide adenine dinucleotide metabolic pathways. Mol Neurobiol 2013 Oct; 48: 294-301.
- 23.Liu W, Sheng H, Xu Y, Liu Y, Lu J, Ni X. Swimming exercise ameliorates depression-like behavior in chronically stressed rats: Relevant to proinflammatory cytokines and IDO activation. Behavioural Brain Research 2013; 242: 110–116.
- 24.Kim TW, Lim BV, Baek D, Ryu DS, Seo JS. Stress-induced depression is alleviated by aerobic exercise through up-regulation of 5- Hydroxytryptamine 1A receptors in rats. Int Neurourol J 2015;19:27-33.
- 25. Chen H I, Lin L C, Yu L, Liu U F, Kuo YM, Huang AM, et al. Treadmill exercise enhances passive avoidance learning in rats: The Neurobiology of Learning and Memory. JNLM 2007;89:489-96.
- 26. Martin S A, Dantzer R, Kelley K W, Woods J A. Voluntary Wheel Running Does not Affect Lipopolysaccharide Induced Depressive-Like Behavior in Young Adult and Aged Mice. Neuroimmunomodulation. 2014; 21: 52–63.
- 27.Herrera R, Manjarrez G, Hernandez J. Inhibition and kinetic changes of brain tryptophan-5-hydroxylase during insulin-dependent diabetes mellitus in the rat. Nutritional Neuroscience 2005; 8: 57–62.