بررسی تأثیر اینوندولاتوری غلطه‌های عصایه بر گانودرما لوسیدویم بر عملکرد ماکروفازهای صافاقی موس BALB/c

شهرداد زمانتی تحقیق‌دهنده، دکتر احمد زواران حسینی، زهرا احمد حسینی، محمدرضا لین،

چهارمی، عضو شورای مدیریت تحقیقات موسیقی

(1) دانش آموزی کارشناسی ارشد اپی‌شماری، دانشکده علوم پزشکی، دانشگاه تربیت مدرس

zamani_imnl@yahoo.com

(2) استاد کرمانی اپی‌شماری، دانشکده علوم پزشکی، دانشگاه تربیت مدرس

PhD

(3) دانشجویی کرمانی اپی‌شماری، دانشکده علوم پزشکی، دانشگاه تربیت مدرس

4- دانش‌آموزی کارشناسی ارشد اپی‌شماری، دانشگاه علوم پزشکی، دانشگاه تربیت مدرس

چکیده

ژن‌شناسی و هدف: قارچ گانودرما لوسیدویم (Ganoderma lucidum) با عنوان یک اینوندولاتور طبیعی مطرح شده است. هنوز بطور دقیق مشخص نشده است که آیا تأثیری از این عصاره مهم‌ترین اثرات اینوندولاتوری آن را تاثیرگذار نمی‌کند. بررسی این امر به‌منظور به‌بینی کردن نقش این عصاره در تولید نیتروژیک اکساید (NO) و تولید آنزیم G6PD بود.

مکانیسم‌شناسی: دانشگاه علوم پزشکی BALB/c چیکالد تعبیر بررسی کرد.

روش بررسی: ابتدا ماکروفازهای صافاقی موس BALB/c جدایی منهای عنوان یک عصاره بخشی از عصاره بخشی تأمین می‌شود.

آزمایشات: در این آزمایشات از سه گروه عصاره، عصاره بخشی و قارچ گانودرما لوسیدویم استفاده گردیده است. با توجه به نتایج، تأثیر قارچ گانودرما لوسیدویم بر تولید فعالیت ماکروفازهای صافاقی موس BALB/c بالاتری نسبت به عصاره و عصاره بخشی را نشان داده است.

نتایج کلی: قارچ گانودرما لوسیدویم، به عنوان یک فعالیت دارویی، در کشورهای آسیای شرقی به وسیله درنده چین به‌طور گسترده جهت افزایش کیفیت سلول‌های اندامین و درمان بیماری‌های قلبی و قلبی استفاده می‌گردد. GL-PS که تحت تأثیر قارچ گانودرما لوسیدویم پیدا کرده این عصاره می‌تواند به عنوان یک عصاره فعال در تولید G6PD به‌کار گیرید.

پایخاطت: بر طبق نتایج حاصله ۱۰۰ میکروگرم در میلی‌لیتر از عصاره بخشی قارچ گانودرما لوسیدویم در مقایسه با سایر دویلما بیشتر تأثیر را روی درصيری زبانه غیر-ماکروفازهای عصاره دارد. بنابراین این میزان از عصاره بخشی قارچ گانودرما لوسیدویم به عنوان یک عصاره فعالیت نیتروژیک اکساید GL-PS تاثیرگذار در تولید NO و G6PD را دارد.
کلید واژگان: عصاره پلي ساکاریدي گانودوما لوسيدوم، آنزيم گلوكز- 6- فسفات ديهيدروژناز، نيتريك اكسيديد، تست MTT

مقدمه
فارغ گانودوما لوسيدوم (GL-PS) جزو بازيديميس ها بوده و متعلق به زير گونه گانودوماتاسه که آفلوفورالها است (1). عصاره آبي پلي ساکاريدي آن بطور وسيعي در كشورهاي آسياي شرقى به وژير چين در طب مثلي برای پيشگيري از بيماريهای هتلت از يك فشار خون بالا، برونشت، آتريريا، نفزيت، زخم معد، بيماري توموريژنيلک و اسکلورودما استفاده مي شود (7-1). گانودوما لوسيدوم اکثراتي چين توموريتي، كاهش كاهستول و كاهش قند خون نيز دارد (10-11). اي توپ كروميدراتي اصلي كه ماسول فعاليت ضد توموري آن است و نيز گرنيده سطح سلولي دراي آن همون كمال مشخص نشده است، با اين حال، نشن داده شده است كه گرنيده CRM3 (گرنيده كمپلمان) كه گرنيده 3 از طریق زغيره هاي جاني نامشخص به گلوكان پلي ساکاريدا متصلا مي شود (11). یک م azt اين مسد كه گانودوما لوسيدوم بسيار بخير باشد زيرا شعوري خوراکی عمارة آن مي خير اثر سي نشان نداده است (12-13). ماکروفاژها سلولهاي ايي هيستند كه در دفاع عليه عوامل غرفه گل و نقش مهمي ايفا مي كنند. مكانيسم هاي ميكروبشي ماکروفاژها عمدا شاكل توليد زادرانه ايي فعال اكسيدين و توليد نيتريك

1. nitric oxide
2. nitric oxide synthase
3. glucose-6-phosphate dehydrogenase
روش بررسی

1- سنجش تیمارهای مکروفاژها

BALB/c محیط مورد استفاده قرار گرفتند. در RPMI تزریق داده و بعد از ۳ روز موردنظر سلولها با دور ۲۰۰۰ به مدت ۲۴ ساعت، قرار گرفتند. در روز نخست و سپس هر چهار روز، با وسیله PBS شسته و بعد از سانتیفیز سنجش می‌شد. در RPMI به همراه حادثه مربوط به ویروس C-30 (۱۰%) به وسیله شیمی‌آزمایی ال‌اس‌ایل تیمارهای RPMI در طول موج نانومتر قرانت شد و به صورت زیر اکس‌گریک، برای تیمار شده با مواد فعال کننده و درصد سنتوپوکنسیو براي (S/N) در تیمار شده از فرمولهای شماره همبسته:

\[\text{GI} = \frac{\text{GI}_{\text{کنترل}}}{\text{GI}_{\text{کنترل}}} \times 100 \]

2- سنجش غلظت نیتریک اکساید (NO)

در اگاه این تست مکروفاژها با غلظت مؤثر ۰.۱ \(\mu g/ml \) از عصاره پی سی‌کاردی (GL-PS) مولکول‌های (SNAP) تیمار و درصد افزایش بی‌ارزش می‌کردند. از مکروفاژها (GL-PS) یک لوئیسومی (NOS) و با غلظت ۰.۰۰۱ (۰.۰۰۱, ۰.۰۱, ۱۰۰۰, ۱۰۰۰۰ \(\mu g/ml \)) پی سی‌کاردی قارچ گانودرمای

4. ۴,۵-تتراتولیوم-۲-یل-۲,۴دیپنیل تتراتولیوم برومید
5. سیلوز فیلمتولیوم برومید
6. نیترولول-پنتیلایمید
این مدت ماکروفازها از به پیلیت جدا شده و فعالیت آن‌زم G6PD در عصاره سلولی ماکروفازهای لیزر شده تظیب شد. بین منشور ماکروفازهای صفاتی جدا شده از به هر چاهک سانتریفوژ شده (g) به مدت 10 دقیقه در 3 درجه سانتی‌گراد سپس در به حالت سوپرسنیو در دامنه و برای لیزش‌دهنده سونیکاسیون (6 باره، 10-s burst with 1-min intervals) قرار داده شد. عصاره سلولی قبل از سنجش به مدت 2 دقیقه با دور 12000 بی دما در درجه سانتی‌گراد سانتریفوژ شده و تا زمان سنجش، روی نگهداری شد. 200 میکرو لیتر از عصاره سلولی با 75 ملی‌لیتر از بایرفت‌رن و سد کلریدی 5 میلی مولار MgCl2 مولار حاوی 7/8 pH (pH7/8)، 25 میکرو لیتر از گلوکوز-6 فسفات 1/7 NADPH میکرو مولار و میکرو مولار گلیکوز-6 فسفات و افزایش بار سنجش بعد از 8 دقیقه اکسپرسیون در 37 درجه سانتی‌گراد در طول موج 339 نانومتر قرائت شد. هنگام غلظت پروتئین سلولی در 5 میکرو لیتر از عصاره سلولی ماکروفازهای به روش براوندورف تعیین شد و فعالیت ویژه آن‌زم بر اساس (27) نتایج حاصل از تست MTT با استفاده از نرم‌افزار ANOVA و آنالیز آماری SPSS تجربی و کلی قرار گرفتند.

یافته‌ها

- ۶ تست نتایج حاصل از اگام تست MTT همان‌طور که در جدول ۱ مشخص شده است، نتایج حاصل از اگام بر روی ماکروفازهایی ایکساید + LPS و IFN-γ + LPS یا به عنوان کنترل مثبت استفاده کرد. نتایج تولید NO توسط ماکروفازهای را غیرکار می‌کند. از ماکروفازهای تیمار شده با عنوان کنترل منفی استفاده شد. زیرا این نتایج ماها تمام اکساید+ LPS و NO2 همراه با کاهش NO تولید به عنوان شاخص میزان NO2 تولید در مایع روی سلول‌های کشت داده شده. توسط روی سلول‌های کشت داده شده با 50 میکرو لیتر از محلول حاوی این آب اکساید آبی دی هیبرسکاراید (mg/ml، 1/100) سولفانیل آمید (mg/ml، 1/6) و اسید فسفوریک 5% و آب مقطر به مدت ۱۰ دقیقه در دمای اتاق انکوبه شد سپس جذب خونه‌ها در ۵۰۰ نانومتر قرائت گردید.

G6PD

- ۴-۶ تبعیض فعالیت آن‌زم برای سنجش فعالیت ویژه G6PD آن‌زم (U/mg) بررسی شد. ماکروفازهای صفاتی موسی را به تعداد ۵×1۰۶ سلول در هر چاهک میکرو لیتر بی درجه افزایش ۹۶ خانه‌ای برگشت و به مدت ۴۴ ساعت با غلظت مؤثر 0.1 از عصاره پلی میکروبی قرار گرفت. به کار درآمدای نوسیدوم تیمار شدند. سپس میکرو لیتر به مدت ۴۴ ساعت در ۳۷ درجه سانتی‌گراد و CO2 و ۴% قرار گرفت. بعد از

7. lipopolysaccharide
8. interferon-γ
9. N-Methyl-L-Arginine
10. Griess method
که با غلظتها مختلفة (0.01, 0.1, 0.5, 1, 10, 100 µg/ml) ساکاریدی فارم (GL-PS) لوسیدوم نشان داد که با این دوزها دندان زنده بودن (ضربی گذاری) ماکروفازه‌ها را افزایش معنی‌داری داده‌اند. (0.05>0.050). در اینجا نمودار بیشترین تأثیر (GL-PS) واگذاری نمودارهای تیمار GL-PS (0.05). را داشت.

- میزان تولید نیتروس (بر حسب میکرومولار) توسط ماکروفازه‌ها بعد از 18 ساعت انکوباسیون با تیمار ماکروفازه‌ها با دوز GL-PS از 0.1 µg/ml

MO+SNAP، ماکروفازه‌ها میزان تولید نیتروس (بر حسب میکرومولار) توسط ماکروفازه‌ها بعد از 18 ساعت انکوباسیون با تیمار ماکروفازه‌ها با دوز GL-PS از 0.1 µg/ml

- نتایج حاصل از سنگش غلظت Nیتریک اکساید (NO) نتایج حاصل از سنگش میزان Nیتریک اکساید تولید شده توسط ماکروفازه‌های تیمار شده بر سر میزان میزان ماکروفازه‌ها با این عصاره میزان Nیتریک اکساید تولید شده توسط ماکروفازه‌ها را بطور قابل توجه نمی‌توان گروه کنترل که در آنالیز آماری با

رضا تأثیر اینومودولاتوری
جفت

گانودرما لوسودوم نوعی قارچ است که بطور وسیعی به عنوان یک قارچ دارویی، در کویشاوری شرکت می‌تواند به‌عنوان یک قارچ دارویی در کریشی و پرورش‌های گیاهی مورد استفاده قرار گیرد.

۱۴۸۰

۱۴۸۰
References
16. ۱۴۴۰، کاکس م. نلسون د. اصول بیوشیمی لینجر. دکتر رضا همی. جلد دوم، انتشارات آیپی، ۱۳۸۲، صفحات: ۶۲۰-۶۳۳.