The effects of endurance training and whey protein supplementation on inflammation and insulin resistance in the rats fed with high-fat diet

Ahmadi-Kani Golzar F., PhD Student1, Fathi R., PhD2, Mahjoub S., PhD3
1. PhD student of Exercise Physiology, Exercise Biochemistry Division, Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran.
2. Associate Professor of Exercise Physiology, Exercise Biochemistry Division, Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran (Corresponding Author), Tel:+98-11-35302201, r.fathi@umz.ac.ir
3. Professor in Clinical Biochemistry, Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.

ABSTRACT
Background and Aim: Whey protein has been known to be an excellent prophylactic agent against obesity. The aim of this study was to assess the effect of endurance training and whey protein supplementation on TNF-α levels and insulin resistance in the rats fed with high-fat diet.

Materials and Methods: In the first phase of the study, 40 male Wistar rats were randomly assigned to two groups: one group was fed with standard chow (n = 8) and the other group with high fat diet (HFD) (n = 32). After 9 weeks, in the second phase of our study, HFD rats were randomly assigned to 4 groups: (1) control, (2) whey supplementation, (3) endurance training and (4) endurance training + whey supplementation groups. Each group consisted of 8 rats. Endurance training protocol was performed for 10 weeks (5days/wk, 1hr/day, 21m/min, and 15% grade). Data were analyzed by Mann–Whitney U test (to compare normal control group and control high-fat diet group) and two way ANOVA.

Results: Body weight (P=0.009), adipose tissue (P=0.002), insulin resistance (P=0.045) and TNF-α level (P=0.022) were significantly higher in HFD sedentary rats, compared to those in the rats in normal diet control group. Adipose tissue weight (P=0.02), blood glucose (P=0.006), insulin (P=0.0003), insulin resistance index (P=0.00021), and TNF-α level in adipose tissue (P=0.039) in whey supplemented groups were lower than those in the non-supplemented groups. Also, body weight (P=0.017), adipose tissue weight (P=0.001), adipose tissue TNF-α level (P=0.001) in the training groups were lower than those in the control group.

Conclusion: Whey protein supplementation led to improvement of high-fat diet-induced insulin resistance and decreased inflammation. Endurance training also reduced inflammation in adipose tissue.

Keywords: Whey protein, Inflammation, Insulin resistance, High-fat diet.

Received: Jan 24, 2017 Accepted: Apr 30, 2017
تأثیر تمرين استقامتی و مکمل پروتئین غذای پرچرب

فرهاد احمدی کلیزار، رضا فتحی، سمیان محجوبی

1. دانشجوی دکتری فیزیولوژی ورزش، ورزشکاری و ورزش، دانشکده ورزشی و علوم ورزشی، دانشگاه مازندران، پایتخت، ایران.
2. دانشجوی دکتری فیزیولوژی ورزش، ورزشکاری و ورزش، دانشکده ورزشی و علوم ورزشی، دانشگاه مازندران، پایتخت، ایران (مؤلف مسوده)، تلفن ثابت: 0910-323-1128.
3. استاد بیوشیمی بالینی، مرکز تحقیقات زیست سلولی و مولکولی، دانشگاه علوم پزشکی بابل، بابل، ایران.

چکیده
زمینه و هدف: پروتئین whey به عنوان یک پیشگیر کننده بیماری علیه در برخی چالشات شده است. هدف از تحقیق حاضر تأثیر تمرين استقامتی و مکمل پروتئین whey بر سطوح TNF-α و مقاومت انسلوئین در رت های تغذیه شده با غذای پرچرب می باشد.

روش بررسی: 40 سررت نر نژاد وستار در فاز اول تحقیق به دو گروه تقسیم شدند: 1-رژیم غذایی استاندارد (8 سر)، و 2-رژیم غذایی پرچرب (32 سر). پس از 9 هفته در فاز دوم موسهی تغذیه شده با غذای پرچرب به غذای گروه (8 سر در هر گروه) تغذیه شدند و 10 هفته با سرعت 20 دیر در روز 60 دقیقه در روز 5 هفته انجام شد. داده ها با استفاده از آزمون مین و ویتنی مقایسه گروه کنترل نرمال و کنترل غذای پرچرب و آنالیز واریانس دوطرفه تحلیل شدند.

یافته ها: در گروه کنترل غذای پرچرب مقادیر وزن بدن (P = 0.002)، مقاومت به انسلوئین (P = 0.45), و فاکتور (P = 0.45), مقاومت به انسلوئین (P = 0.45) TNF-α نسبت به گروه غذای استاندارد بالاتر بود. وزن بیشتر چربی (P = 0.02), (P = 0.22) کنترل غذای پرچرب به انسلوئین (P = 0.22), (P = 0.22) TNF-α و طبیعی (P = 0.04) TNF-α کنترل غذای پرچرب (P = 0.04) کنترل غذای پرچرب (P = 0.04) TNF-α کنترل غذای پرچرب (P = 0.04) TNF-α کنترل غذای پرچرب (P = 0.04) TNF-α کنترل غذای پرچرب (P = 0.04)
نتیجه‌گیری: مصرف مکمل whey منجر به بهبود مقاومت انسلوئین ناشی از غذای پرچرب و کاهش التهاب گردن داد. تمرین استقامتی التهاب بافت چربی را کاهش داد.

کلید واژه‌ها: پروتئین whey، التهاب، مقاومت به انسلوئین، غذای پرچرب

پنجمین مقاله: 09/11/1195 اصلاح نهایی: 09/11/1195 پذیرش: 09/11/1195
Thiazoladinediones

Chronic obstructive pulmonary disease (COPD)

COPD is a long-term lung disease that makes it hard to breath. It is caused by the same things that cause asthma and bronchitis. COPD is also called chronic bronchitis and emphysema.

COPD affects the airways and alveoli in the lungs. It makes it hard to get oxygen into the body and to get carbon dioxide out.

COPD can be caused by smoking or by being exposed to things that irritate the lungs, such as air pollution or chemicals.

COPD is a long-term lung disease that makes it hard to breathe. It is caused by the same things that cause asthma and bronchitis. COPD is also called chronic bronchitis and emphysema.

COPD affects the airways and alveoli in the lungs. It makes it hard to get oxygen into the body and to get carbon dioxide out.

COPD can be caused by smoking or by being exposed to things that irritate the lungs, such as air pollution or chemicals.

COPD is a long-term lung disease that makes it hard to breathe. It is caused by the same things that cause asthma and bronchitis. COPD is also called chronic bronchitis and emphysema.

COPD affects the airways and alveoli in the lungs. It makes it hard to get oxygen into the body and to get carbon dioxide out.

COPD can be caused by smoking or by being exposed to things that irritate the lungs, such as air pollution or chemicals.

COPD is a long-term lung disease that makes it hard to breathe. It is caused by the same things that cause asthma and bronchitis. COPD is also called chronic bronchitis and emphysema.

COPD affects the airways and alveoli in the lungs. It makes it hard to get oxygen into the body and to get carbon dioxide out.

COPD can be caused by smoking or by being exposed to things that irritate the lungs, such as air pollution or chemicals.

COPD is a long-term lung disease that makes it hard to breathe. It is caused by the same things that cause asthma and bronchitis. COPD is also called chronic bronchitis and emphysema.

COPD affects the airways and alveoli in the lungs. It makes it hard to get oxygen into the body and to get carbon dioxide out.

COPD can be caused by smoking or by being exposed to things that irritate the lungs, such as air pollution or chemicals.
مراتب کنترل شده تا 3/4 درجه سانتی‌گراد و چرخه روش‌های تأثیری 12 ساعت (روشن‌پلاکی از ساعت 0/5 تا ساعت 2/0) نگهداری شدند. تمام آزمایشات توسط کمیته اخلاق در دانشگاه مادران مورد تایید قرار گرفت. پس از سیری شدن یک هفته به منظور سازش با محیط عدید، در قازوال رت‌ها به دو گروه تقسیم شدند: 1. رژیم غذایی استاندارد (سر موه) 2. رژیم غذایی پرچب (SER موه) 3. رژیم غذایی پرچب (SER+Whey)

whey مکمل 3 تمرین استقامتی، 4 مکمل تمرین استقامتی به مدت 10 هفته. گروه کنترل تقسیم شده با غذای استاندارد نیز تا ۱۹ هفته تحت رژیم غذایی استاندارد قرار گرفته.

روش تهیه رژیم غذایی پرچب: غذای استاندارد به صورت پلت غذایی شده و پودر از شرکت تولید کننده خوراک دام به‌صورت خریداری شده غذای پرچب (درصد 40/12492) بر اساس رژیم غذایی D12492.

* weny و * Lard

MCP-1 Monocyte Chemoattractant Protein-1 (MCP-1)
میزان 0.3۲ دقیقه در روز و 0.۲۱ متر در دقیقه در هفته تا ریسیدن به سرعت ۲۱ متر در دقیقه با شیب ۱۵ درصد باید ۶۰ دقیقه در روز و ۵ روز در هفته افزایش یافته که در هفته چهارم به این سرعت ریسیدن و تن با پایان دوره تمیزین این شکست مخصوص برای می‌باشد (۲۲).

روش بافت بردار و اندازه‌گیری منفی‌ها: ۴۸ ساعت پس از آخرين جلسه تمریني و بعد از ۸ ساعت ناشیتی روزهای ب تنزیق درون صفحه ترکیبی از کامین (۵۰ میلی گرم بر کیلوگرم) و زاپاژنین (۵ میلی گرم بر کیلوگرم) بی‌هوش شدن و مسیب با خارج کردن قلب قربانی شدن. بلافاصله پس از خوردن گردیده و بلافاصله در زمان م-book (۱۸۰-۱۲۰ دقیقه) (۱) ۱۱ به شدت و در دمای ۳۰ درجه تهیه شده تهیه شده است. مکمل تهیه شده تهیه شده است از ۳۰ دقیقه بعد از ورود پروتئین GOLD STANDARD محصول شرکت اپی‌پامیام (WHEY; Optimum Nutrition, Inc., USA) بهصورت تغذیه دهانی (گاو) داده شد. مکمل در آب مقدار حل در آب مقدار حل شد استفاده شد از این انسان حدود ۲۰ گرم در هر وعده مصرف باید رزیم گاهی طبیعی و برنامه ورزشی است. (۹) دور� و روز تهیه مقدار در این مطالعه از یک دور معادل انسان بر اساس سطح نزدیک با استفاده از رمول بر آورد شد. با فرض وزن انسان ۸۰ کیلوگرم، دور معادل انسان ۲۰ گرم برای یک فرد ۴۰ کیلوگرم (۴۳۲/۰ گرم بر کیلوگرم وزن بدن=۴۳۲/۰ ÷ ۱۷۰ = ۲/۰ گرم بر کیلوگرم) ضرر تهیه دیده ۱۷/۱۸ برای محاسبه تفاوت در سطح و ریز بدن بین روز و روز استفاده شد (۹).

روش تهیه‌بندی: داده‌ها با استفاده از ترمیم و روشش در اولین ساعات جریان تاریخی (جرج هفته لخت محور) (۱) انجام شد. ترمیم روی یک نوار گردان موتور‌دار انجامش. به منظور آشنا‌سازی یک هفته قبل از جریان ترمیمی حیوانات به مدت سه جلسه با سرعت ۱۰ متر بر دقیقه باید ۱۰ دقیقه بر روی نوار گردان دو بند. پروتئین تهیه استفاده‌ای ب با سرعتاً اولیه ۱۵ متر در دقیقه به شیب ۱۵ درصد (۹) در روز اجرا شد و مدت و سرعت به صورت تدریجی به

5 Mercodia 6 Diaclone 7 Mann–Whitney U test
نتایج
گروه های کنترل غذای نرمال و کنترل غذای پرچرب برای بررسی اثر غذای پرچرب، ترکیب بدن، گلکزک، انسولین، مقاومت انسولینی و سطح در گردش و بافتی TNF-α پیامده ماپیسه شدند. در گروه کنترل غذای پرچرب مقادیر وزن بدن (P=0/09، وزن کل (P=0/003 و نسبی بافت قربی ایپیدیم، گلکزک (P=0/02)، نسبی بافت TNF-α انسولین (P=0/05 و سطح در گردش (P=0/006) به صورت معنی داری نسبت به گروه غذایی شده با غذای پرچرب، نشان داد که وزن کل (P=0/02 و نسبی بافت قربی TNF-α جدول 1)

جدول 1. اثر غذای پرچرب بر وزن بدن، وزن بافت قربی، مقاومت انسولینی و سطح TNF-α

<table>
<thead>
<tr>
<th></th>
<th>تاثیر غذای انحراف میانگین (pg/ml)</th>
<th>نسبت به غذای نرمال (P=5/00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گلکزک (گرم)</td>
<td>3/5 ± 0/1</td>
<td><0/001</td>
</tr>
<tr>
<td>انسولین (گرم)</td>
<td>3/5 ± 0/1</td>
<td><0/001</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>3/5 ± 0/1</td>
<td><0/001</td>
</tr>
<tr>
<td>TNF-α بین بعادی (pg/ml)</td>
<td>3/5 ± 0/1</td>
<td><0/001</td>
</tr>
<tr>
<td>Condition</td>
<td>TNF-α (pg/ml)</td>
<td>HOMA-IR</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Control</td>
<td>0.1 ± 0.03</td>
<td>0.1 ± 0.02</td>
</tr>
<tr>
<td>Whey</td>
<td>0.1 ± 0.03</td>
<td>0.1 ± 0.02</td>
</tr>
</tbody>
</table>

This table shows the TNF-α levels and HOMA-IR values for control and whey groups. The data indicates a significant decrease in TNF-α levels in the whey group compared to the control group, suggesting a potential anti-inflammatory effect of whey protein.
گروه‌های کنترل کمتر می‌باشد. اما بین گروه‌های تمرین کرده و تمرین نکرده، تفاوت در شاخص مقاومت انسولینی و سطح TNF-α مشاهده نشده. با توجه به اینکه وزن بند و وزن باین کاری در موفقیت گروه‌های تمرینی TNF-α اختلافات کاهش سطح در تحقیق حاضر پس از دوره تمرینی به دلیل بهبود ترکیب بدنی می باشد. ایفای نقش های می‌باشند. انتظار می‌رود این نتایج به منظور احتمالی کاهش می‌یابد.

در ارتباط با تاثیر تمرینات ورزشی بر شاخص‌های انوپلاتیپ و همکاران Linden در مطالعه HOMA در انسولین نشان داده که بین تمرین ورزشی افزایش در آنزیم‌های که افزایش اسیداهیسین جریبی را تحریک می‌کند، افزایش اندازه‌های معنی‌داری دیده در موارد غذایی دریافت‌پس از تمرین، و افزایش آزادسازی پیدا کاهش دهنده اشتهای (فاکتور آزاد کننده گلوکزیک‌تروپیک) و توسط هیپوتالاموس می‌باشد.

با استفاده از مطالعات مزایای تمرین هوایی را نشان داده اند که باعث نتایج یک وضعیت واقعی در موفقیت گروه‌های چنین و Linden (2006) و انسولین و شاخص می‌گردد. بنابراین نشان دهنده که رژیم غذایی پرچرب مانع از اثر تمرین ورزش بر متابولیسم گلگز و جریبی می‌شود (14).

همچنین پایه‌های مطالعه حاضر نشان داد که این تحقیق می‌تواند مرجع به کاهش وزن باین کاری، سطح TNF-α باین کاری، سطح گلگز، انسولین و شاخص مقاومت به انسولین می‌گردد. بنابراین تاثیرات مورد حفاظت متوسط در برخی از عوامل مرتبط با سلامت متابولیک شامل وزن بند، چاقی، جریبی و وزن باینی شاخص‌های تئیهی در باین جریبی، سطح بنابراین کاهش وزن باین گروه‌های تمرینی، کاهش همبستگی و سطح بنابراین کاهش وزن باین گروه‌های تمرینی مشاهده شده، به علت کاهش پاسخ‌های

8 Anorectic peptide (corticotrophin-releasing factor)
مطالعات کمی اثر مکمل whey را بر سازگاری های ناشی از تمرینات و وزن‌بری بررسی کرده است. در مطالعه‌ای از Weinheimer و همکاران (2011) گزارش کرده که مصرف مکمل پروتئین whey به مدت 16 هفته، با پایش ناشی از تمرینات هوازی و مقاومت بردکننده و شاخص‌های سندروم تانپبولیکس در افراد میان‌سال جوان و whey اضافه و نتیجه‌گیری بیشترین مقدار (27). عدم تغییر درتعداد از داشتن پروتئین لپوپروتئین تیوبی‌آمودنی‌ها از نظر بالینی باشد. عدم تغییر در برخی از شاخص‌های سندروم تانپبولیکس ممکن است به این دلیل باشد که کمتر از 50 درصد آمودنی‌ها دارای میزان مصرف شایع ترین تانپبولیکس پروتئین همچنین این مطالعه به دلیل میزان بالای ریزش آمودنی‌ها (43) محدود شده بود Arciero و همکاران (2014) نشان داد تمرین مقاومت و یا تمرین ترکیبی چند‌محوره با مصرف whey پروتئین به مدت 16 هفته در بزرگ‌سالاری دارای اضافه وزن و چاقی، مستقل از محدودیت‌های رژیم غذایی و توزیع کل و ناحیه جبهه دیده، مقاومت انرژی‌های و آمپرودینک‌ها تأثیر مثبت دارد (38).

نتیجه گیری

در کل یافته‌های حاضر نشان داد که مصرف مکمل پروتئین whey متفاوت به کاهش جببی، بدن بهبود مقاومت به انرژی‌های و انسولین نشان داد. با توجه به کاهش بیشتر مقاومت انرژی‌های و افزایش سطح TNF-α، بعضی از این نتایج ممکن است پیشنهاد سومادونه پروتئین whey در مواردی مانند افزایش وزن اثرات یافته‌های این مطالعه و اثرات یافته‌های این مطالعه نشان داده اند که عصاره پروتئین whey عصاره مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی نشان داده اند که عصاره پروتئین whey مصرفی توسطر موثر آزادسازی 1 (یک تعامل کننده منفجر پاسخ انرژی‌های) را تحریک کند (25) مطالعات آزمایشگاهی N
References