برآورد جذب روزانه و پتانسیل خطر فلت سنگین در بافت های مختلف ماهیان
رودانه گاماسیاب

چکیده
زمینه و هدف: ماهی یکی از مهم‌ترین موجودات آبی‌زی در زنجیره غذایی انسان می‌باشد که قادر به تجمع فلات سنگین در بافت های مختلف خود را دارد. در این راستا، هدف این مطالعه بررسی غلظت پنج فلت سنگین (کادمیوم، سرب، کروم، مس و روی) در بافت های آبی‌زی ماهی‌های ماهیان کپور معمولی، شیرمرهی و آمور در رودانه گاماسیاب در سال 1393 به همراه تجربه این و برآورد میزان پتانسیل خطر مصرف این آب‌زایان می‌باشد.

روش ورودی: این مطالعه مقطعی بوده و سه گونه ماهی در رودانه گاماسیاب در فصول پاییز و زمستان 1393 صید شدند. روش آماده‌سازی بافت ها بصورت هضم طبیعی تر بوده و قرار بر فلات تحت تنش دستگاه ICP انجام شده است. اطلاعات به دست آمده توسط نرم افزار SPSS نرم‌افزار آماری تجزیه و تحلیل گرندید.

یافته‌ها: حذ معجز مصرف روزانه ماهی برای فلات کادمیوم، سرب، کروم، مس و روی در سه ماهی مورد مطالعه در این تحقیق به ترتیب 0/21، 0/18، 0/12/3 و 0/2020 میکروگرم در روز برای یک فرد بالغ با وزن 70 کیلوگرم بدست آمد. شاخص HQ این مطالعه برای تمام فلات سنگین کمتر از 1 بود.

نتیجه‌گیری: شاخص‌های این مصرف سنگین (HQ) ماهی‌های این مطالعه کمتر از 1 بوده و نشان دهنده سالم بودن مصرف این ماهیان می‌باشد. اما از آنجاییکه فلات سنگین خاصیت تجمع زیستی دارند پایش فصلی این منطقه از نظر فلات سنگین امروز مهم به نظر می‌رسد.

کلید واژه‌ها: ماهی، سبیت، فلات سنگین، رودانه گاماسیاب

پژوهش: 94/12/10

اصلاح‌های اخیر: 94/12/20
پایه‌گذاری و سایر آینده‌های محیطی در جهت بکارگیری روش‌های پیشگیرانه و ارتقاء استانداردها و قوانین مانند ضروری می‌باشد (16). بافت‌های کید، آیشیش و ماهی از مهم‌ترین بافت‌هایی هستند که در مطالعات جهانی فلزات سنگین در ماهیان اردوگاه ورسرد قرار می‌گیرند. بافت کید از بافت‌های متابولیک مفهومی می‌باشد که در فعل و انفعالات بدن و در دفع مواد زائد نقش بسزایی دارد (13). بافت آیشیش ماهی نقص تنفسی و غلظات در دندان و جوش مستقیماً با محیط اطراف ماهی در تماس است. قابلیت دیگری عناصر آینده‌های مهم‌ترین سنگین در کرک از نظر ماهی بوده که که از نظر ماهی گروه ماهی‌ها که به اندازه‌ای از آینده‌ها نکات هستند که به ماهی‌ها در آب‌زیان، بطور غیرمستقیم موج‌های فلزات سنگین به‌دست‌آورده مصرف کرک‌ها و کنترل آینده‌ها منجر از انواع مختلفی که از امکان‌ها و بدیه‌ها به ماهی‌ها برای اجرا یک سیستم باز و بی‌ار女یز و به‌صورت غیرمستقیم موج‌های فلزات سنگین در دو بافت‌های مختلف ماهیان در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاتالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی، متابولیک ماهیان و در اکوسیستم‌های آب‌زیان‌های کاثالیزورها و فیلتریکی
با فتح خوراکی آنان به عمل نمی آورند، از اینتر، جهت پخش رودخانه های استان کرمانشاه، در تحقیق حاضر به بررسی میزان تجمع زیست فلزات سنگین کامپوزیت سرب، گردو، مس و روی در رودخانه های آبشیش، کبک و ماهیچه ماهیان کبیر معمولی، شهرماهری و آمور در رودخانه گاماسیاب واقع در استان کرمانشاه پرداخته شده است.

روش بررسی

این مطالعه از نوع مقطعی (توسعی-تحلیل) بوده که طی آن تعداد 45 نمونه از سه گونه ماهی کپور معمولی، شهرماهی و آمور (گونه‌های غلبه با کاریکی فردی در منطقه) در فصل پاییز و زمستان 1393 در طول مسير رودخانه گاماسیاب (روودخانه گاماسیاب رود بیراب پا طول 130 کیلومتر و میانگین دیگ سالهای 2/3 متریک در ناحیه واقع در قلب استان است) رودخانه گاماسیاب یکی از سرشاردهای گرد و رودخانه‌های مرکزی است. این هردومین آبزی پر مصرف در دو استان همدان و کرمانشاه واقع شده است (16). در طول مسیر این رودخانه وجود مناطق روستایی و شهری و همچنین مناطق کشاورزی تقلیل ایجاد آلودگی در این رودخانه را می تواند به همه داشته باشد. به سیل تغییرکننده گوشواره‌های صید گردید. نمونه‌ها پس از صید در داخل کیسه‌های پلاستیکی تمیز در داخل فلورسک های محجوب به پنجره بخش پایینی شده. پس از تأمین نمونه‌ها ماهی سیاه که محل آنها کاملا مشترک است. سپس نمونه‌ها کدگذاری شده و پیوستی آنها انجام شد. با فتح مورد عطای در این مطالعه در این پژوهش شامل آبپر، کبک و عضله بودند. اندام‌های فوق از ناحیه آبزیشگاه توسط استکاری بدون آلودگی جدا شدند. برداشت بافت عضله از قسمتی از عضله در بخش بالایی بدن (نر بانانی) صورت گرفت و بررسی وزن نر ماهی توزین گردید (13). جهت هضم شیمیایی نمونه‌ها مخلوطی از اسید تریتیک (HNO₃) و اسید HClو
مقادیر مجزای مصرف در روز (Cr_{lim}) که در اینجا در مطالعه هایی که برای کروم گروه Cr در روز (BW) تعیین شده است، به عنوان میانگین مصرف مجموعه ها در چاپگاه های مختلف نمودار شده است، با توجه به میانگین فلزات سنگین اندام‌گیره انسان، در بخش خودکافی آن (پوشش از طریق راهنمای زیر محبوب) استفاده شده است.

$\text{Cr}_{\text{lim}} = \text{RFD} \times \text{BW} / \text{BW}$

ملاحظه:

میانگین مصرف مجموعه ها در چاپگاه های مختلف نمودار شده است. با توجه به میانگین فلزات سنگین اندام‌گیره انسان، در بخش خودکافی آن (پوشش از طریق راهنمای زیر محبوب) استفاده شده است.

$\text{Cr}_{\text{lim}} = \text{RFD} \times \text{BW} / \text{BW}$
نمودار 1: غلظت فرازات روی و مس (ppb) و کادمیوم، سرب و کروم (ppm) در بافت های کسور معاملی رودخانه گاناسیاب.

نمودار 2: غلظت فرازات روی و مس (ppb) و کادمیوم، سرب و کروم (ppm) در بافت های شیر ماهی رودخانه گاناسیاب.

نمودار 3: غلظت فرازات روی و مس (ppb) و کادمیوم، سرب و کروم (ppm) در بافت های آموز رودخانه گاناسیاب.
جدول 2: آماری و آمار برداری فلاتر در پاته‌های سه گونه ماهی کبوس معمولی، شهرماهی و آمور در رودخانه گاناسیاب

<table>
<thead>
<tr>
<th>HQ</th>
<th>CR</th>
<th>DI</th>
<th>ماهی</th>
<th>کبوس معمولی</th>
<th>شهرماهی</th>
<th>آمور</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6/5</td>
<td>6/5</td>
<td>6/5</td>
<td>6/5</td>
</tr>
<tr>
<td>9/8</td>
<td>9/8</td>
<td>9/8</td>
<td>7/6%</td>
<td>7/6%</td>
<td>7/6%</td>
<td>7/6%</td>
</tr>
<tr>
<td>3/5</td>
<td>3/5</td>
<td>3/5</td>
<td>4/2%</td>
<td>4/2%</td>
<td>4/2%</td>
<td>4/2%</td>
</tr>
<tr>
<td>100/14</td>
<td>100/14</td>
<td>100/14</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آمار</td>
<td>آمار</td>
<td>آمار</td>
<td>آمار</td>
<td>آمار</td>
<td>آمار</td>
<td>آمار</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>p</th>
<th>F</th>
<th>p</th>
<th>F</th>
<th>p</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
</tr>
<tr>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
</tr>
<tr>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
</tr>
<tr>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
<td>NS</td>
<td>0.05</td>
</tr>
</tbody>
</table>

p: signiﬁcance level, NS: not signiﬁcant

بحث

بنا بر نتایج توضیحات مفصل شده که غلظت فلاتر سگین در پاته آبشک و کید بیشتر از ماهیچه گزارش کردند (4). در تحقیق دیگری که توسط همین محقق بر روی ماهیان سد شالاک انجام شده و مشخص گردید که میزان تجمیع زعیمی فلاتر سگین در پاته‌های کید و آبشک بیشتر از پاته ماهیچه بوده است (21). تحقیقات نشان داده است که پاته آبشک و کید از اندازه‌های هدف و از فعالترین در پاته آبشک و کید بیشتر از پاته ماهیچه بوده است (21).

\[DOI: 10.22102/21.2.112 \]
نتایج مطالعه نشان داد که میانگین غلظت فلزات ضروری مس و روی در گیاه ماهیان مورد بررسی بیشتر از میانگین اکوسیستم‌های آن‌ها می‌گردد، ولی دارای دلیل خاصیت مس و روی قابلیت تجمیع زیست‌فلازات سنگین در زنجیره غذایی، پایش‌های سالانه اکوسیستم‌های آبی ضروری به نظر می‌رسد.

در ارتباط با ارزیابی ریسک مصرف سه گونه ماهی براساس تابع بسته آمده از این مطالعه میزان برای ماهیان این مطالعه کمتر از 1 محبوبیت شد، بنیانه‌های این مدل از 145 گرم در روز خوشه‌بود، که برای نتانس با وزن افرادی تحت‌الاختیار شده‌اند. از طرفی هم سازمان جهان‌نما خواهان نشان داده است که این مصرف مس و روی در گیاه ماهیچه سازمان‌های جهانی بهداشت که براي فلزات مس، روی و کادمیوم مس و روی و ترتیب برای 3/2، 3/2، 3/2، 3/2، 3/2، 3/2 و 3/2 سازمان خوراکی جهانی که با همان ترتیب برای 3/2، 3/2، 3/2 و 3/2 اعلام کرده است (15)، به‌طور می‌هماند که یافته‌های این مطالعه با پایین‌تر از حد مجاز مصرف بوده است و مصرف ماهیچه این سه گونه ماهی مشکل بهداشتی به همراه

نخواهد داشت. همچنین نتایج بسته آمده از این مطالعه

محله علمی دانشگاه علوم پزشکی کرمان / تاریخ پیشنهاد: 1095

thiol groups
Reference

12. Raissy M, Rahimi E, Ansari M. Comparison of graphite furnace atomic absorption spectrometry and potentiometric stripping analysis method for determination of lead and cadmium concentration in fish muscle. 18th National Congress on Food Technology. 2008 Oct. 15-16, Mashhad, Iran.