چکیده
زیمنه و هدف: سلولهای بنیادی مزانچیمی، سلولهای بالغ خیال‌پردازی‌کننده فرآیندهای چند و چند، این سلولها اولین بار از مغز استخوان جدا شده و از مهندسین سلول ها در سلول درمانی به حساب می آید. حدود ۱۰٪ از این سلولها با توجه به خواص تعدد کندگی از طریق عوامل و فاکتورهای سروکوب کننده می‌شوند. در این ترکیب آنها استخوان گشت‌دهت دی از درمان بیماری‌های دی‌ایکولوریزیک (بیماری‌های مزمن و خوداینی) و غیر دی‌ایکولوریزیک (مهدسی گرفت، ترمیم بافتی، بیماری‌های تخریب کننده و پدیدشان) دارد. لذا، در مورد خاصی با هدف مطالعه نقش های درمانی سلولهای بنیادی مزانچیمی (کلونیکا) در اولویت این ترکیب سلولهای بنیادی مزانچیمی و پلک‌های پیش رو قرار گرفت.

روش بررسی: در این مطالعه مربوط به سلولهای بنیادی مزانچیمی از بنکهای اطلاعاتی و مرجع ISI و WILY ONLINE LIBRARY و Pubmed و Google scholar و Scilight و Springre Direct و Link web of science و SID و مرکز جستجو قرار گرفت. سپس مقالات منجر به نقش تعداد کتکنگی انتقال درمانی (در بیماری‌های دی‌ایکولوریزیک و غیر دی‌ایکولوریزیک) و کاربردهای کتکنگی سلولهای بنیادی مزانچیمی از سال ۲۰۱۳ تا ۲۰۲۰ جستجو و مطالعه کردند.

یافته‌ها: نتایج بدست آمده از مطالعات، حاکی از توان باید سلولهای بنیادی مزانچیمی جدا شده از علت مختلف در کارآزمایی‌های (پیش‌کاتکنگی و کتکنگی) است. سلولهای بنیادی مزانچیمی نقص کلیوی در تعدد سیستم ایمنی به واسطه فاکتورهای متغیرش و ارتباط سلول به سلول در بیماری‌های الکلی و کاهش ترمیم بین‌النوعی و افزایش از طریق تولید تهیه‌سازه و سرمکورهای در سلول به کاهش در فضای که روزانه به دلایل فیزیولوژیک و یا پاتولوژیک (بیماری‌های تخریب کننده و غیر الکلی) از پیش به ویژه بافتی خاصی خاصی بر سرطان آن و باعث افزایش در هدف ناوتاریت و مهار رگ‌زایی دارند. برای عدم تغییر از نوع مطالعه، استفاده از سلولهای بنیادی مزانچیمی خطراتی از قبیل القای تومور، احتمال انتقال عوامل عنصری و ایده‌آل بهترین راه دیگر بود.

نتیجه‌گیری: نقش درمانی سلولهای بنیادی مزانچیمی در بیماری‌های تخریب کننده، این سلولها اثر رابطه بین همکاری‌ها در انتقال درمانی می‌تواند با رعایت استانداردها (بر اساس دستورالعمل ها) در آینده استفاده گسترده‌ای از این سلولها در کارآزمایی‌ها به دست آید.

کلمات کلیدی: سلولهای بنیادی مزانچیمی، تعدد سیستم ایمنی، سلول درمانی، طب ترمیمی، مهدسی گرفت، ارتباط سلول-سلول، فاکتورهای کننده.

مراجع:

Wos مقاله: ۰۳/۱۰/۱۰۱۵ اصلاح‌های نهایی: ۰۲/۱۲/۱۰۱۳ گذشته: ۹۳/۱۱/۱۰۱۵
آمیختگی سلول‌های بنیادی و اسکینه‌های مزانتیمی از موردبر

سپرده گرفته و تعداد آنها در مغز استخوان

سروده هست در مراحل مختلف است. از طرفی با هیپوکسی
می‌توان سلول‌های بنیادی مزانتیمی را از مغز استخوان
به خون محتوی موی‌پارنت 11 کرده. در مدل های تجربی، این
سلولها به ترتیب انواع مختلفی پیوسته می‌تواند و اتصال
سلول به سلول 12، نقش بالقوه ای را در اصلاح باینی,
 rageای، تکامل مغز استخوان، خون‌زاری و همچنین در
تعادل سیمی ایمنی دارد. بر اساس مطالعات، نقش ترمیمی
سلول‌های بنیادی مزانتیمی در محل آسیب دیده و همچنین
ایجاد یک پست 15 مناسب برای سلول‌های دخانای خون‌ساری
از طریق اتصال فاکتور منتقل شده است. از طرفی، سلول‌های بنیادی مزانتیمی، زیستی کار
پورتن یا سلول‌های نیشی در بستر ارگانیت و اتصال آن با لیگاند 4
DHبله شده است. همچنین نقش حمایت کندنگی سلول‌های
بنیادی مزانتیمی از خون‌زاری و سلول‌های بنیادی رویانی در
بیروتن و درون 15 به بیان و دیده است. با توجه به
نقش ترمیمی کندنگی در سیمی ایمنی، کاهش نگرانی های
اختلال و تغییرات لگنی در سوی ویژن ترمیمی آنها
و استفاده از آنها در کلیک افزایش یافته است (5). لذا،
با توجه به ایجاد تحمیل ایمنی محیطی، امکان پیوند آلترزینیک
سلول‌های بنیادی مزانتیمی در بستر ارگانیت می‌باشد (6). گفتنی است
که کاراژی‌های سلول‌های بنیادی مزانتیمی از سال
2004 شروع شده و تا حال حاضر 334 کار آزمایی بلافاصله در
فاز‌های مختلف به ثبت رسیده است. لازم به ذکر است
سیستم‌ها که کمکی خیلی مؤثر در مهار، تکرر و
علو مؤثر در تعداد سیمی ایمنی، رگ‌زایی و آپوپتوز می‌باشد

ایجاد می‌کند. پیشرفت مطالعات پیش‌بینی کردن، نشان داده

احراز می‌دهدکه بر اساس خواص خود نوسانی (طولانی
مدت) پاناسی و تمایز در شرایط فیبرولیزیک و تجویز
قادرند انواعی از سلول‌های اختصاصی با عملکرد اختصاصی
را ایجاد کنند. بر اساس تعریف، سلول درمانی زیر مجموعه
ای از طریق ترمیمی بوده و بر اساس عارفی سلول‌های بنیادی
در پاتوژن شرح داده شده است. گفتگوی انتخاب جداسازی
سلول‌های بنیادی وابسته به توجه دو سلول دخانای 6 یک ویله
قدرتمند برای تحقیقات پیوسته فراهم کرده است. از
طرفی با توجه به اینکه انواع سلول‌ها از هر سلول‌های
ایجاد می‌کند، باید توجه ایندیکس کردن سلول‌ها در طب
ترمیمی به پایه می‌باشد. جداسازی انواع سلول‌ها از یافته‌ها، منجر به
نرخ تکامل و سلول‌های بنیادی القا شده 9 می‌شود، لذا با
توجه به محدودیت اختلالی در استفاده از سلول‌های بنیادی
رویانی و سلول‌های بنیادی القا شده در کلینیک، زیستی کار
بر روی سلول‌های بنیادی مزانتیمی و رونق یافته (2010) در
حدود ۱۲۰ سال پاتولوژیستی آلمانی بنام کوهمن دریافت که در مغز استخوان، سلول‌های بنیادی
همان‌نوعی و وجود دارد که می‌توانند در فرآیندهای ترمیم
بافته‌های محیطی نقش داشته باشند. برای اولین بار در سال
1976 فردیندهایی همکاران سلول‌های شبیه‌پردازی‌ستی از
مغز استخوان جدا و ویژگی‌های ایمنی را و نواک شدی
زرایی 1 را در بستر بروکا بر روی 11 بیمار کرده، این سلول‌ها
با توجه به توان کلی زرایی و توان تمایز آنها، سلول‌های
بنیادی مزانتیمی نام گرفته (2010). سلول‌های بنیادی
مزانتیمی با توجه به پلاستیسمی با آن، نه تنها رده های
مزوده‌ای و یا گیاهی و آپوپتوز را ایجاد می‌کنند، بلکه سلول‌های اکترومیو و انواع می‌باشد

| Long Term |
| Subtype |
| Ennery Cell Mass |
| Induced Pluripotent Stem Cells(iPS) |
| Embryonic Stem Cells(ESCs) |
| MSCs |
| Colony Forming Unite-Fibroblast |
| Invitro |

مجله علوم دانشگاه علوم پزشکی کرمان / جلد ۱۱۰۳ / میدان و زیست / ۱۴۰۸
Mesenchymal Stem Cell Transplantation
Immunomodulation
Cell Therapy
Regenerative Medicine
Tissue Engineering
Cell-Cell Contact
Tropic Factors

Colony Forming Unite-Fibroblast
Fibroblast – Like Cells

Mesenchymal stem cells transplantation, immunomodulation, cell therapy, regenerative medicine, tissue engineering, cell-cell contact, tropic factors

Downloaded from sjku.muk.ac.ir at 21:06 +0330 on Friday March 20th 2020
[DOI: 10.22102/20.3.113]
MSCs)

شکل ۱. حداکثر شاخص

با توجه به اینکه نهایت سلول‌های بنیادی مراتبیمی از MSCs در اختلافات، نیاز به ایجاد جهت دستیابی به سلول‌های فراهم شده است. جامعه آنتی‌موتک این سلول‌ها در مصرف استخوان در اطراف سیستم عروق، مجزا از سلول‌های هم‌موتکیک و در تندی اندوستوم است (۳۷). گزارش‌هایی ثابت کرده‌است که اکثر مراکز تحقیقاتی مختلف تهیه این سلول‌ها از شده، که می‌توان به انتخاب جنین از قبیل آنتی‌موتک، مصرف وارونگی۵، به‌خوبی شدیده که در خانه‌های مختلف علاوه بر مغز استخوان در باقه‌های چربی و عضلاتی، ریز، درمیسی، تریکوپلاستیک، استخوانی، پرستوم، خون محیطی، خون به منافع غذایی، بینی‌های از این سلول‌ها در داخل سلول‌های اندوستومات، شایع کننده و آنتی‌موتکیک به صورت گردن و موستان سیستم‌های فرآیند و حاوی واکنش‌های مسیرگذاری اختصاصی از سلول‌های بنیادی روابط از قبیل ۳۴ و ۳۵. سینوریال اشاره کرد که این کمک از منابع مزدک دارای توان نمای زیبایی هستند (۴۰) به عنوان مثال، لیبل تمایز استنژیک سلول‌های جدا شده از پلاستیک به دلیل كاهش بیان فابورهای نشده برداری ۲ و Runx2 به سبب سلول‌های آدنی شده از منابع استخوان کمتر، در صورتی که تنها در کنونیک و آدیپوزیک سلول‌های بنیادی مراتبیمی جدا شده از پلاستیک دیقیار مراحل مختلف تمایز کنونیک و آدیپوزیکی از قبیل PPAR۲ و SOX۹ می‌تواند از منابع استخوان است. (۳۰) با توجه به اینکه سلول‌های بنیادی مراتبیمی در طول

Amniotic Membrane Endothelial Cells (AMECs)۴۱
Stage-Specific Embryonic Ag۴۱
Tumor Rejection Ag۴۱
Wharton-jelly۴۲

Published by Elsevier B.V. / Elsevier B.V. / Elsevier B.V. / Elsevier B.V.
با توجه به توزیع گستردگی سلولهای بنیادی مزاتئیک و نتایج آنها، آنتی‌ژن‌های ترکیبی و کلاته‌پیکنیک و کلاته‌پیکنیک دیده شده است (1،2). حفاظت بیماران درمانی که سلولهای بنیادی مزاتئیک منجر به رشد، تırımیم آسیب پذیری و اصلاح ترتیب ژن‌های سلولهای که روزانه به دلایل فیزیولوژیک و یا پاتولوژیک از دست می‌روند، می‌شودند. لذا رفتار این سلولهای حفاظت از نقش مؤثر این سلولهای در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد. بر اساس مطالعات، پیدایش این سلولهای بنیادی مزاتئیک، نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد سلولهای بنیادی مزاتئیک نیاز به بهبود شایعات ژئن‌هایی دارد که در دمای آسیب‌های دافنی و بیماری‌های تخریب کننده درد

Tumor Necrosis Factor-inducible gene 6 protein

ملوتومی، دانشگاه علوم پزشکی کرمان - دوبی، بیستم/ماه ماه، 1396

Amniotic Membrane -MSCs(AM-MSCs)
پلی‌پات‌های همبستگی... ممکن است برای اهداف درمانی منفی باشد. از طریق سلول‌های تنابه‌ور از سلول‌های پیش زمینه به واسطه فاکتورهای نسبتی Rex-4, Sox-2, Oct-4, Nanog, می‌تواند سلول‌های تنابه‌ور رابی در هستند (6).

اولین گزارش توسط تعداد سیستمی از سلول‌های تنابه‌ور متغیر در مهار پرولیفراکسون سلول‌های T در شرایط بزون و درون تن دیده شد. از اینرو این سلول‌های علاوه بر ترمیم بافتی، از طریق تعاملات داخل سلولی و آزاد کردن تعداد پیشماری از فاکتورهای برکنار محول، قادر به سرکوب سیستم ایمنی هستند (6). مولکول‌های سطحی و داخل سلولی منطبعد در سلول سرکوب ایمنی و تغییر در پاسخ ایمنی نشان داد (16 و 17). MHC لفوئوسیت‌های T، مولکول‌های کمک تحرکی و با تعامل با فاس‌فاس فازی، TLR و MHC-I، توانایی سلول‌های اکثریتی در سلول‌های تنابه‌ور ایمنی، سلول‌های با پرواتومول تولید، که با ترکیب این MHC-I و ترکیبات اصلی در پردازش آنی قرار می‌گیرد.VAH با کاهش احتمال TLR MHC-I و CD40L با CD40، B7-2، B7-3، HLA-G از انسان و توسط پروتئین‌ها و ژنتیکی در سلول‌های تنابه‌ور در همسایگان T، عضو محیطی یک ژن TLR می‌باشد (16 و 17). در صورتیکه مولکول‌های ICAM1، انریوگر نکردن و ژن‌های این تحرکیکه، TLR و در پردازش آنی قرار می‌گیرد. VAH با کاهش احتمال TLR MHC-I و CD40L با CD40، B7-2، B7-3، HLA-G از انسان و توسط پروتئین‌ها و ژنتیکی در سلول‌های تنابه‌ور در همسایگان T، عضو محیطی یک ژن TLR می‌باشد (16 و 17). در صورتیکه مولکول‌های ICAM1، انریوگر نکردن و ژن‌های این تحرکیکه، TLR و در پردازش آنی قرار می‌گیرد. VAH با کاهش احتمال TLR MHC-I و CD40L با CD40، B7-2، B7-3، HLA-G از انسان و توسط پروتئین‌ها و ژنتیکی در سلول‌های تنابه‌ور در همسایگان T، عضو محیطی یک ژن TLR می‌باشد (16 و 17). در صورتیکه مولکول‌های ICAM1، انریوگر نکردن و ژن‌های این تحرکیکه، TLR و در پردازش آنی Q:

Programmed Cell Death Receptor-1
Immunoglobulin – Like Transmembrane Receptor 2
Uregulation
Inducible Nitric Oxidase
Indoleamine 2,3 Dioxygenase
Resting NK Cells
Downregulation
Phiripotent
Antigen Processing Machinery
Intracellular Cell Adhesion Molecule
IFN
Toll-Like receptors

تمایل سلول‌های تنابه‌ور از سلول‌های پیش زمینه به واسطه فاکتورهای نسبتی Rex-4, Sox-2, Oct-4, Nanog, می‌تواند سلول‌های تنابه‌ور رابی در هستند (6).

ملکه علی دانشگاه علمی پزشکی گرگان / دوبلیک / 1397
مولکول‌های کمک تحکیمی از قبیل B7-H1 و B7-H4، مولکول‌های مرتبط با مراکز بنیادی T نیکت‌های TCD4+ و CD8+، T نیکت‌های CD8+، CD4+، CD8+ و کمک‌های بی‌کاری T نیکت‌های CD8+، CD4+ و کمک‌های بی‌کарی T نیکت‌های CD8+، CD4+ و کمک‌های بی‌کاری T NKT

Leukemia Inhibitory Factor
Stem Cell Factor
soluble HLA-G
Hepatocyte Growth Factor
T naive

Immune Privileged Organs
Pleotropic

 глобулин

 viewpoint

 مرض

 Il-10

 هزینه علمی دانشگاه علوم پزشکی کرمان / دفتر بیستم / میراد و شهریور 1396
<table>
<thead>
<tr>
<th>Soluble Factors</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDO</td>
<td>Inhibition of Proliferation</td>
</tr>
<tr>
<td>NO</td>
<td>Inhibition of Tryptophan</td>
</tr>
<tr>
<td>HGF</td>
<td>Inhibition of Proliferation, Cytotoxicity</td>
</tr>
<tr>
<td>sHLA-G, TGF-β</td>
<td>Inhibition of Proliferation, Cytotoxicity, Promotion of Treg Generation</td>
</tr>
<tr>
<td>PGE-2</td>
<td>Inhibition of Proliferation, Cytotoxicity, Stimulation of Cell Activation and Inhibition of DC and Treg Stimulation</td>
</tr>
<tr>
<td>IFN-γ, TNF-α, IL-1β</td>
<td>Promotes Chemokine Production and Immunosuppressive Factor Such as NO or IDO</td>
</tr>
<tr>
<td>IL-6</td>
<td>Regulates Migration, Stimulates Mitosis and Angiogenesis</td>
</tr>
<tr>
<td>IL-10</td>
<td>Inhibition of Apoptosis</td>
</tr>
<tr>
<td>VEGF</td>
<td>Inhibition of Apoptosis, Stimulates Angiogenesis</td>
</tr>
<tr>
<td>LIF</td>
<td>Inhibition of Apoptosis</td>
</tr>
<tr>
<td>SCF</td>
<td>Supports Growth and Differentiation</td>
</tr>
<tr>
<td>Jagged-1</td>
<td>Enhances Differentiation</td>
</tr>
<tr>
<td>CCLs & CXCLs</td>
<td>Promotes Migration of Leukocytes</td>
</tr>
</tbody>
</table>

Magatti-CCL2, CCL8, IL-6, TNF-CXCL10, CCL5, PGE-2, NO, IDO, TSG6, PD1, CCL2, LIF, SCF, Jagged-1

Table 1: Summary of Biological Reactions to Soluble Factors

<table>
<thead>
<tr>
<th>Soluble Factors</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDO</td>
<td>Inhibition of Proliferation</td>
</tr>
<tr>
<td>NO</td>
<td>Inhibition of Tryptophan</td>
</tr>
<tr>
<td>HGF</td>
<td>Inhibition of Proliferation, Cytotoxicity</td>
</tr>
<tr>
<td>sHLA-G, TGF-β</td>
<td>Inhibition of Proliferation, Cytotoxicity, Promotion of Treg Generation</td>
</tr>
<tr>
<td>PGE-2</td>
<td>Inhibition of Proliferation, Cytotoxicity, Stimulation of Cell Activation and Inhibition of DC and Treg Stimulation</td>
</tr>
<tr>
<td>IFN-γ, TNF-α, IL-1β</td>
<td>Promotes Chemokine Production and Immunosuppressive Factor Such as NO or IDO</td>
</tr>
<tr>
<td>IL-6</td>
<td>Regulates Migration, Stimulates Mitosis and Angiogenesis</td>
</tr>
<tr>
<td>IL-10</td>
<td>Inhibition of Apoptosis</td>
</tr>
<tr>
<td>VEGF</td>
<td>Inhibition of Apoptosis, Stimulates Angiogenesis</td>
</tr>
<tr>
<td>LIF</td>
<td>Inhibition of Apoptosis</td>
</tr>
<tr>
<td>SCF</td>
<td>Supports Growth and Differentiation</td>
</tr>
<tr>
<td>Jagged-1</td>
<td>Enhances Differentiation</td>
</tr>
<tr>
<td>CCLs & CXCLs</td>
<td>Promotes Migration of Leukocytes</td>
</tr>
</tbody>
</table>

Table 1: Summary of Biological Reactions to Soluble Factors

<table>
<thead>
<tr>
<th>Soluble Factors</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDO</td>
<td>Inhibition of Proliferation</td>
</tr>
<tr>
<td>NO</td>
<td>Inhibition of Tryptophan</td>
</tr>
<tr>
<td>HGF</td>
<td>Inhibition of Proliferation, Cytotoxicity</td>
</tr>
<tr>
<td>sHLA-G, TGF-β</td>
<td>Inhibition of Proliferation, Cytotoxicity, Promotion of Treg Generation</td>
</tr>
<tr>
<td>PGE-2</td>
<td>Inhibition of Proliferation, Cytotoxicity, Stimulation of Cell Activation and Inhibition of DC and Treg Stimulation</td>
</tr>
<tr>
<td>IFN-γ, TNF-α, IL-1β</td>
<td>Promotes Chemokine Production and Immunosuppressive Factor Such as NO or IDO</td>
</tr>
<tr>
<td>IL-6</td>
<td>Regulates Migration, Stimulates Mitosis and Angiogenesis</td>
</tr>
<tr>
<td>IL-10</td>
<td>Inhibition of Apoptosis</td>
</tr>
<tr>
<td>VEGF</td>
<td>Inhibition of Apoptosis, Stimulates Angiogenesis</td>
</tr>
<tr>
<td>LIF</td>
<td>Inhibition of Apoptosis</td>
</tr>
<tr>
<td>SCF</td>
<td>Supports Growth and Differentiation</td>
</tr>
<tr>
<td>Jagged-1</td>
<td>Enhances Differentiation</td>
</tr>
<tr>
<td>CCLs & CXCLs</td>
<td>Promotes Migration of Leukocytes</td>
</tr>
</tbody>
</table>

Table 1: Summary of Biological Reactions to Soluble Factors
کندگی‌های لنفوسیت‌های T (آنزیمی) دچار اختلال شده و این حال حین چگونه سلول‌های بنایدی مزامنیشته (کننده با افزودن چاپی‌های سوکاراکشید) و انتقال مجید سلول‌های مناسبی نیز دیده می‌شود، که نشانگر تغییر عملکردی غیرقابل گشایش ناشی از سلول‌های بنایدی مزامنیشته در تایم مسیریتی است (6).

سلول‌های کندگی‌های بی‌پروتئین MHC-I,II که بکار می‌برند: CD11c، CD83، CD80، CD83، CD86 و CD1a.

سلول‌های کشته طبیعی، مهترین سلول‌های اکتیو در این ذهن بوده که نقش اصلی آن در پاسخ علیه سلول‌های آلوتوی و سلول‌های آلوتوی از طریق فعالیت سیتوکین‌ها در سیتوکین‌های به بهبود این سلول‌ها می‌یابد. عمل سلول‌های بکار می‌برنده‌های سطح سلولی و انتقال پایه‌های سلولی و تحرکی تصویتی می‌گردد. سیتوکین‌های سلول هدف با سلول‌های کشته‌های طبیعی، وابسته به بیان لیگاندها بر روی سلول‌های هدف و بیان گیرنده‌های آن، بر سطح سلول‌های کشته‌های طبیعی، موجب می‌شود سلول‌های کشته‌های طبیعی، فعال‌سازی انتصاب‌سازی سلول‌های کشته‌های طبیعی، فعالیت‌های سلول‌های بنایدی مزامنیشته را از طریق ترشح فاکتورهای سرکوب کننده PGE-2 و sHLA-G، TGF-β ایجاد کنند. از عاملان عفونت‌سازان سلول سلول‌های هیپرثروشوند سلول‌های وابسته به سلول‌های کشته‌های طبیعی، وابسته به HLA-I و HLA-II.

سسول‌های دندانی در حضور سلول‌های بنایدی مزامنیشته با سطوح پایین‌تر از TNF-α، IL-12، افزایش ترشح‌های IL-1b و IL-6 و کاهش پیشیان HMD می‌تواند. این امر با توجه به این که سلول‌های آلوتوی به سیتوکین‌های HLA-G، TGF-β و همچنین تولید CD86 و CD80 و HMF.12

SL1 و SL2 نیز می‌تواند. کننده‌های انتصاب‌سازی سیتوکین‌های سلول‌های کشته‌های طبیعی، در مقابل سلول‌های آلوتوی و سلول‌های آلوتوی از طریق ترشح فاکتورهای سرکوب کننده PGE-2 و sHLA-G، TGF-β ایجاد کنند. از عاملان عفونت‌سازان سلول سلول‌های هیپرثروشوند سلول‌های وابسته به سلول‌های کشته‌های طبیعی، وابسته به HLA-I و HLA-II.

SL1 و SL2 نیز می‌تواند. کننده‌های انتصاب‌سازی سیتوکین‌های سلول‌های کشته‌های طبیعی، در مقابل سلول‌های آلوتوی و سلول‌های آلوتوی از طریق ترشح فاکتورهای سرکوب کننده PGE-2 و sHLA-G، TGF-β ایجاد کنند. از عاملان عفونت‌سازان سلول سلول‌های وابسته به سلول‌های کشته‌های طبیعی، وابسته به HLA-I و HLA-II.

SL1 و SL2 نیز می‌تواند. کننده‌های انتصاب‌سازی سیتوکین‌های سلول‌های کشته‌های طبیعی، در مقابل سلول‌های آلوتوی و سلول‌های آلوتوی از طریق ترشح فاکتورهای سرکوب کننده PGE-2 و sHLA-G، TGF-β ایجاد کنند. از عاملان عفونت‌سازان سلول سلول‌های وابسته به سلول‌های کشته‌های طبیعی، وابسته به HLA-I و HLA-II.

SL1 و SL2 نیز می‌تواند. کننده‌های انتصاب‌سازی سیتوکین‌های سلول‌های کشته‌های طبیعی، در مقابل سلول‌های آلوتوی و سلول‌های آلوتوی از طریق ترشح فاکتورهای سرکوب کننده PGE-2 و sHLA-G، TGF-β ایجاد کنند. از عاملان عفونت‌سازان سلول سلول‌های وابسته به سلول‌های کشته‌های طبیعی، وابسته به HLA-I و HLA-II.

SL1 و SL2 نیز می‌تواند. کننده‌های انتصاب‌سازی سیتوکین‌های سلول‌های کشته‌های طبیعی، در مقابل سلول‌های آلوتوی و سلول‌های آلوتوی از طریق ترشح فاکتورهای سرکوب کننده PGE-2 و sHLA-G، TGF-β ایجاد کنند. از عاملان عفونت‌سازان سلول سلول‌های وابسته به سلول‌های کشته‌های طبیعی، وابسته به HLA-I و HLA-II.

SL1 و SL2 نیز می‌تواند. کننده‌های انتصاب‌سازی سیتوکین‌های سلول‌های کشته‌های طبیعی، در مقابل سلول‌های آلوتوی و سلول‌های آلوتوی از طریق ترشح فاکتورهای سرکوب کننده PGE-2 و sHLA-G، TGF-β ایجاد کنند. از عاملان عفونت‌سازان سلول سلول‌های وابسته به سلول‌های کشته‌های طبیعی، وابسته به HLA-I و HLA-II.

SL1 و SL2 نیز می‌تواند. کننده‌های انتصاب‌سازی S
من مراکز در یک مطالعه مشابه، سطوح پایینی از ترشح محیطی با سلول های TCD8 + در شرایط فیزیولوژیک مثبت می‌باشد.

در شرایط فیزیولوژیک که سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 +، نکته هسته ای از سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 +، نکته هسته ای از سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 +، نکته هسته ای از سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 +، نکته هسته ای از سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 +، نکته هسته ای از سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 +، نکته هسته ای از سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 +، نکته هسته ای از سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 +، نکته HGF, TGF-β mRNA

واکنش فاکتورهای ماده کندن مهاجرت سلولی، که یک فاکتور مهار کننده قوی در مهاجرت ماکروفاژها و یک فاکتور مهار کننده فعالیت لیثوس وابسته به سلول های کندن طبیعی است را شناسایی کرد (10).

نقطه برداشتهای مرتبطی در مطالعات واگیری در مراکز اپتیکال

پس از برخط و گیرنده سول Lی آتی زن، لنفوسیت T که کندن و عملکرد انترکوپت نشان دهنده از ذکر است، حتی من می توان سلول های بنیایی TGF-β mRNA

را انجام می دهد. لازم به ذکر است، حتی می توان سلول های بنیایی TGF-β mRNA

متونهایهای گیاهان نشان دهنده از دیدگاه شیمیایی TGF-β mRNA

را انجام می دهد. لازم به ذکر است، حتی می توان سلول های بنیایی TGF-β mRNA

ها تولید بیشتری بر روی سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول های TCD8 + در ناحیه مثبت ترشح محیطی با سلول HGF, TGF-β mRNA

که کندن و عملکرد انترکوپت نشان دهنده از ذکر است، حتی من می توان سلول های بنیایی TGF-β mRNA

در ناحیه گیاهان نشان دهنده از دیدگاه شیمیایی TGF-β mRNA

را انجام می دهد. لازم به ذکر است، حتی می توان سلول های بنیایی TGF-β mRNA

ماکروفاژها و یک فاکتور مهار کننده فعالیت لیثوس وابسته به سلول های کندن طبیعی است را شناسایی کرد (10).

نقطه برداشتهای مرتبطی در مطالعات واگیری در مراکز اپتیکال

پس از برخط و گیرنده سول Lی آتی زن، لنفوسیت T که کندن و عملکرد انترکوپت نشان دهنده از ذکر است، حتی من می توان سلول های بنیایی TGF-β mRNA

را انجام می دهد. لازم به ذکر است، حتی می توان سلول های بنیایی TGF-β mRNA

ماکروفاژها و یک فاکتور مهار کننده فعالیت لیثوس وابسته به سلول های کندن طبیعی است را شناسایی کرد (10).

نقطه برداشتهای مرتبطی در مطالعات واگیری در مراکز اپتیکال

پس از برخط و گیرنده سول Lی آتی زن، لنفوسیت T که کندن و عملکرد انترکوپت نشان دهنده از ذکر است، حتی من می T Cell Receptor (TCR)

Mixed Lymphocyte Reaction

Vascular Endothelial Growth Factor (VEGF)
سولولهای بنیادی مزاتیشی به دو مکانیسم (شکل ۳) پاسخ سولولهای T را تعمیل می‌کند. با استفاده از آلودگی تهاجمی زنده جنگ‌های CD28 و CD3 تقویت ت‌هافته می‌نماید. از طرف دیگر، در مقابل نیز تأثیر لفامیزیت T را می‌شکند. در حضور سولولهای بنیادی مزاتیشی، سولولهای T در فاز G0/G1 سیکل سولول متوسط در موقعیت تیپ ۲، این حالت در سطح مولکولی وابسته به تنظیم منفی سیلیکن D۲ که به بسیاری از مولکولهای تکثیر و خاصیت تیپ ۱، این نیروی افزایش آن را در سلولهای T بدن قرارگیری‌شده است.

CD4+ و CD8+ سولولهای T نظیر Foxp3 و CD25+ سولولهای T تنظیم گردیده و می‌تواند به منجر به کاهش در جنگ‌های T به کاهش تولید از طریق افزایش نشود.

سولولهای بدن مزاتیشی از طریق گلگر و تکثیر تولید شده باشند.

مهل ۳ مکانیسم های مستقیم و غیر مستقیم در تعمیل پسخ سولولهای T

شکل ۳ مکانیسم‌های مستقیم و غیر مستقیم در تعمیل پاسخ سولولهای T

با استفاده از آلودگی تهاجمی زنده جنگ‌های CD28 و CD3 تقویت ت‌هافته می‌نماید. از طرف دیگر، در مقابل نیز تأثیر لفامیزیت T را می‌شکند. در حضور سولولهای بنیادی مزاتیشی، سولولهای T در فاز G0/G1 سیکل سولول متوسط در موقعیت تیپ ۲، این حالت در سطح مولکولی وابسته به تنظیم منفی سیلیکن D۲ که به بسیاری از مولکولهای تکثیر و خاصیت تیپ ۱، این نیروی افزایش آن را در سلولهای T بدن قرارگیری‌شده است.

CD4+ و CD8+ سولولهای T نظیر Foxp3 و CD25+ سولولهای T تنظیم گردیده و می‌تواند به منجر به کاهش در جنگ‌های T به کاهش تولید از طریق افزایش

زیست پاسخ توجه یابیده است.

سرولولهای تولید تهیه گردیده و پیگذاری شده از سولولهای نمونه‌گیری غار آنتی‌جیهابی فعال یافته که در آن سه طبقه استمع:

الف - سولولهای بنیاد غار آنتی‌جیهابی غاری هیپتو بیسیونگی که به تولید و بلع سولولهای عرض کند.

ب - آنتی‌جیهابی لفامیزه به کمک PGE۲، IDO و TGF-

ب - سیتوکین‌های تهیه و سرکوب سیتوم آنتی‌جیهابی در محیط هستند.

(۱۰)

سلولهای T و سلولهای T

نتظیم
گرایش کلینیکی سلولهای بنیادی مزاتشیمی
سلولهای بنیادی مزاتشیمی علاوه بر تعیین سیستم ایمنی و نقص مهاریان، استفاده گسترشده ای در مهندسی بافت، طب ترمیمی، تعمیر باند و بسیاری از اختراعات بیشتر نیز در Singer فاز I-III همکارانی به آن اشاره شده است (۵۸). استفاده از سلولهای بنیادی مزاتشیمی در درون تن که در شکل ۳ با اختصار به آن اشاره شده است، در موارد زیر دیده شده است:

![Shapabest 3](https://example.com/shapabest3.png)

1. گرفتن بافت آسیب دیده و پرونده بدون دفع در سلولهای بنیادی مزاتشیمی کآپوتروپیک (۶۷،۶۸،۷۰).
2. سلولهای بنیادی مزاتشیمی در پرونده هموزمان با سلولهای بنیادی خونساز، با گیاه‌پزشی در درمان غیرنام‌زمانی موجب اصلاح استرولمال مغز استخوان و بهبود سلولهای بنیادی خونساز پيونرد می‌شود (۷۱) اما گزارشات از شکست جلوگیری از GVHD تی نیز دیده شده است (۵۸). لازم به ذکر است که سلولهای بنیادی مزاتشیمی بروز فعالیت نیاز به یک محیط اطمینان داشته، یا دعا اعتیمان و زمان ترتیب، دو زاویه و منبع ترتیب سلولهای بنیادی مزاتشیمی ضروریست (۷۲).

Graft Versus Host Disease

فکوسیتی سلولهای T، پرولیفراسیون و سیتوپازیسیتی سلولهای T و سلولهای کتشنه، طبیعی دارند (۷۳). حتی می‌توان با آنها بهبود بلوزه کتشنه و B-HLAF به طور ممکن دار توان پرولیفراسیون لنفوپاتی را افزایش داد که مطرح کننی خواص سرکوب کنتگری هر مولکول در سرکوب سیستم ایمنی است (۷۴). از طرفی گفتگو سلولهای بنیادی مزاتشیمی نیز در افزایش سطوح اثر مهاوران کننی ایمنی افزایش داده می‌شوند. هرچند مکانیسم های گیرنده نیز درگیر بوده، پیشنهاد مطالعات بیشتری دارد.

سلولهای B

سلولهای بنیادی مزاتشیمی علاوه بر اثر مهاوران کننی بر لنفوپاتی T، قادر به پرولیفراسیون سلولهای GVHD فعال در حضور ۴ IFN-۱ و منافع در تولید آنها بادی از B

[۳] MSCs

[۴] GVHD

[۵] ۲۰۰۶

[۶] DOI: 10.22102/20.3.113
مجهل علمی دانشگاه علوم پاکیزه کرمان / دوبه پیشتم / میراث و شهریور

Transduce
Coat
Inflammatory Bowel Disease (IBD)
Membrane Type-1-MMP

Systemic Administration
Myocardial Infarction (MI)
Matrix Metalloproteinase

مکانیسم سلول‌های بنیادی مانژئیسی را می‌توان با ترکیب سلول‌های بنیادی مانژئیسی با

نام‌زدایی بقای بیماران از افزایش داد.

در مطالعات نشان داده شد که سلول‌های بنیادی مانژئیسی باید ترکیبی تولید کنند که به طور مجدد در

نظر گرفته می‌شود. این امر باعث این شد که افزایش ترکیبی و اصلاح سلول‌های بنیادی در سال 2000 با

پیوند سلول‌های بنیادی مانژئیسی با رحم گونسند، بقای

طلولی مدت پویند تا 13 ماه دیگر شد و هیچ سلول‌های پویند

زدیده در شرایط امنی کاردیو، به کندرپیست، موسیت،

آدیپوسیت، کاردیوپروپتیس، سلول‌های استریوال مغز

استخوان و سلول‌های تیمپیریا توانسته یا کردن. (38).

بر

اساس مطالعات، اکثریت سلول‌های پس از پویند در گونسندگان

به طور نرمال در مورد پی اندازه و پی تحریق در طول زمان

نابود شدند. (39).

در رویکرد از پیامدهای سیستمیک (39) کاربردی سلول‌های بنیادی مانژئیسی وجود دارد: 1.

بر

اساس ویژگی‌های سلول‌های بنیادی مانژئیسی در شرایط

درون تن، پس از ترکیب آن‌ها در موسیت، منجر به

مهم‌تر سلول‌های بیان‌گذارانی از انتسابه

غیره، کبک و ریه (1) شهد و سلول‌های پویند تا 13 ماه

زنده مانند، 2- افزایش تجمع و دوزال سلول‌های بنیادی

مانژئیسی در بافت آسیب‌دهنده بیشتر بیشتر و مصرف دامی داشته باشد. نکته با این‌که، بیان مولکول‌های

مرتب با گرفتن می‌توان با به‌کارگیری های پیش انتظارهای

از پیلین IL-1 و TNF افزایش داد (40، 42). سلول‌های

بنیادی مانژئیسی در بافت آسیب‌دهنده بیشتر بیشتر و مصرف دامی داشته باشد. نکته با این‌که، بیان مولکول‌های

مرتب با گرفتن می‌توان با به‌کارگیری های پیش انتظارهای

از پیلین IL-1 و TNF افزایش داد (40، 42). سلول‌های

بنیادی مانژئیسی در بافت آسیب‌دهنده بیشتر بیشتر و مصرف دامی داشته باشد. نکته با این‌که، بیان مولکول‌های

مرتب با گرفتن می‌توان با به‌کارگیری های پیش انتظارهای

از پیلین IL-1 و TNF افزایش داد (40، 42). سلول‌های

بنیادی مانژئیسی در بافت آسیب‌دهنده بیشتر بیشتر و مصرف دامی داشته باشد. نکته با این‌که، بیان مولکول‌های

مرتب با گرفتن می‌توان با به‌کارگیری HGF1، PDGF، KGF، VEGF، bFGF، CCL2، IL-6، HGF، bFGF،

در بسیاری از مطالعات پیش درمانی با فاکتورهای رشد یا

MHC
در طیفی از سرکوب التهاب و کاهش آسیب کلیه ها و روده بهبودیگر آماری احتمال سلولهای T تنظیمی نش خاصی را در درمان پیمایی با مقاومت استروئید شدید (50/500 مولیول) لوپوس اریتماتوس سیستمیک و پیامد کرون AMS (50/500) همچنین گزارش شانگزی از بهبودی مزمن یک مغزی از طریق نش تعیین کننده فوری سلولهای تنیابی مزانتیشی موجود است (50).

شکل 4. کارآزمایی‌های بالینی سلولهای تنیابی مزانتیشی طبق بندی شده در پیماری (سال 2012) (f=1/0,6)

سلولهای تنیابی مزانتیشی قادرنده طی طیف استریت سد خونی - مغزی، بدون ترخیص ممتاز مغز میزان، به سمت مغز و مغز مهاجرت کنند. در اینباره سلولهای تنیابی مزانتیشی آلترنیک در استقلاط میانبینی تحریم مدل موشی با استخوان سلولهای ایمن در طایفه خاصی و کاهش سطوح IL-17 و IFN-γ با کاهش تند به شدت بین امراض بود سلولهای تنیابی مزانتیشی در سیستم اصاص مركزی (CNS) با مکانیزم های جایگزینی سلولهای و فعالیت نش طبیعی اتفاق کرد (3). این اتفاق به عنوان ترمیمی سلولهای تنیابی مزانتیشی می‌پردازد:

طلای گون

در تغییرات در سلولهای تنیابی مزانتیشی و راهبرد جدیدی در ترمیم زخم و بهبودی MI است. بیماری ایمنی با مراقبت استروئیدی شدید (50/500) لوپوس اریتماتوس سیستمیک و پیامد کرون AMS (50/500) همچنین گزارش شانگزی از بهبودی مزمن یک مغزی از طریق نش تعیین کننده فوری سلولهای تنیابی مزانتیشی موجود است (50).

در غضروف و استخوان جلوگیری کرد. سلولهای تنیابی مزانتیشی با ترشح 10 میکرواکتوهای ترمیمی شده - پGE-2 با جلوگیری از مهاجرت نتروفیلا به بافت در درمان سیپسیس مؤثر هستند، مکانیسم آن چیست که به فعالیت ضد التهاب سلولهای تنیابی مزانتیشی ناشی از میکرواکتوهای ضد التهابی و نش بالقوه ی آنها در ترمیم بایستی است. (3) همچنین سلولهای تنیابی مزانتیشی نش خاصی را در درمان فیبروز ریوی، فورتوپاتی حاد کلیوی و جلوگیری از پیشگیری دیابت دارند. از طرف سرکوب التهاب سلولهای تنیابی مزانتیشی منجر به تکامل سلولهای بتا و گلیکوم کلیوی با کاهش کلاژن و التهاب می‌شود. همچنین می‌توان نش با اهمیت آنها در درمان اختلالات تروپوزیک، استروفازیس متعادل، بیماری‌های کبدی، سیتروپنی، سرطان، بیماری‌های قلبی، بیماری‌های ریوی، GVHD، بیماری‌های غضروفی - استخوانی، دیابت و سایر بیماری‌های را ثابت کرد (شکل 4) (20). از طرف سلولهای تنیابی مزانتیشی (تولوگو و 80)

**درمان سلولهای تنیابی مزانتیشی با ترشح 10 میکرواکتوهای ترمیمی شده - پGE-2 با جلوگیری از مهاجرت نتروفیلا به بافت در درمان سیپسیس مؤثر هستند، مکانیسم آن چیست که به فعالیت ضد التهاب سلولهای تنیابی مزانتیشی ناشی از میکرواکتوهای ضد التهابی و نش بالقوه ی آنها در ترمیم بایستی است. (3) همچنین سلولهای تنیابی مزانتیشی نش خاصی را در درمان فیبروز ریوی، فورتوپاتی حاد کلیوی و جلوگیری از پیشگیری دیابت دارند. از طرف سرکوب التهاب سلولهای تنیابی مزانتیشی منجر به تکامل سلولهای بتا و گلیکوم کلیوی با کاهش کلاژن و التهاب می‌شود. همچنین می‌توان نش با اهمیت آنها در درمان اختلالات تروپوزیک، استروفازیس متعادل، بیماری‌های کبدی، سیتروپنی، سرطان، بیماری‌های قلبی، بیماری‌های ریوی، GVHD، بیماری‌های غضروفی - استخوانی، دیابت و سایر بیماری‌های را ثابت کرد (شکل 4) (20). از طرف سلولهای تنیابی مزانتیشی (تولوگو و 80)
عملکردی در اندازه خلیق در راه شده و از آتروفی سلولهای که اکسکوپی آنها بردارشده شده جلوگیری کرده. این اندازه از راه شده که پیوند سلولهای بنیادی مارکری به رفتار سرکوب ایمنی شده که مغز آنها نصف شده. با کاهش مارکر میکروگلیال و پروتئین هامار بوده، که نتایج همگونی سلولهای در پروس تهابی و ترمیم آسیب طبیعی نخاعی است (10).

سکته مغزی: تهاب در این اختلال به عوامل اصلی متفاوت سلولی می‌باشد. سکته مغزی خاصی که تهیه شده بر اساس مطالعات، سلولهای بنیادی مارکری به هیپوکامیا می‌باشد. از طرفی درد در صفحه اثرات تهابی دارد. لذا پیوند مستقیم سلولهای بنیادی مارکری به مدل ایسکمیک بی‌پیش‌آمده است (11). پس از 150 روز موجب بهبود اکسکوپی و کاهش اندامه سکته مغزی و ایمنی به اسید متغیر در مقایسه با تریتی‌های دارای گروه کنترل در مورد مشابه. 12 روز پس از سکته مغزی و بدن‌های آمیزه با وضوح و کاهش شناسایی با ریگ آمیزه نیست. 70 مورد ارزیابی قرار گرفت و افزایش سلولهای سالم در ایسکمیک بی‌پیش‌آمده در مقایسه با تریتی‌های دارای گروه کنترل دیده شد. (11).

هموروزی داخل مغزی: بهبود ادم مغزی و اصلاح عملکرد نورولوژیک دم‌بان پیوند سلولهای بنیادی مارکری به رهایی از پیوند سلولهای بنیادی مارکری به یک بعدی در مغزی، به‌دست آمده. 28 روز پس از پیوند سلولهای بنیادی مارکری به یک بعدی در مغزی، به‌دست آمده. پلاکت خونده، و ایمپوردی کنترل قرار گرفت. سلولهای بنیادی مارکری در منطقه بافت‌شناخته شده و پتانسیل در طول دیواره جانی و در اطراف ناحیه آسیب دیده ممکن است. سلولهای پیش‌آمده مارکری در مقایسه با گروه کنترل دیده شد. سلولهای بنیادی مارکری تریتی‌های دیده شده، منجر به ترمیم مجدد آکسکوپی و بهبود

ایسکمی: با پیوند سلولهای بنیادی مارکری انسانی در
ایسکمی وضعیت ناشی از اندام شرایی در مدل حیوانی
(رت) بهبود عملکرد، کاهش حجم سکته، افزایش حس، و
مصوب دیده شد که احتمالاً با واسطه تولید IGF-1,
VEGF, FGF, EGF, VEGF, TNF-α، مطالعات افزایش
یافته بیان IL-10 و کاهش پیشگیری مغزی در مدل خونده
منجر به کاهش حجم سکته. حتی در مطالعه مشابه،
افزاش معنی دار فاکتور نورولوژیک مشتق شده از مغز
و فاکتور رشد نورونی با کاهش معنی دار سلولهای
آپوپت شکن در تولید فاکتورز دیده شد. نورون‌های که در معرض فاکتور نورولوژیک مشتق شده از مغز قرار
دارند، با افزایش فعالیت مصرف AKT و محافظت از
در برای خروج فاکتور ترمیم همراه بودند (6).

آسیب طبیعی نخاعی: از سلولهای بنیادی مارکری در درمان
مدل تهاب ناشی از ایسکمی تهابت‌های اصلی و داشته باشد. در این تحقیق،
نتایج نشان داد که این اختلال با درد در مدل
الم حیوانی بی‌پیش‌آمده است. در مدل حیوانی تهابت
دنده و مشفق در بی‌پیش‌آمده اثرات
Xenotransplantation
Infarct
Brain-Derived Neurotrophic Factor (BDNF)
Nerve Growth Factor (NGF)
Axotomized
Locomotion

مهلت علمی دانشگاه علوم پزشکی کرمان / دوره پیشتم / مرداد و شهریور 1396
The text in the image appears to be a scientific document discussing autoimmune encephalomyelitis (EAE) and related studies.

The text is in Farsi and contains technical terms related to the study of EAE and its treatment.

Here is a transcription of the text:

"MS McDonald" and "Li TCD3 F4/80(+) TGF- β PGE-2 Th2 IL-5" are mentioned, indicating a focus on the study of immune cells and their role in EAE.

"Homebox1 Nude Streptozotocin" is also mentioned, suggesting the use of specific genes and chemicals in the study.

The text includes references to experimental autoimmune encephalomyelitis (EAE) and related models, as well as the use of various antibodies and markers.

The document seems to be discussing the immune response and its role in the development of EAE.

The text also includes references to the use of "Streptozotocin" and "(Experimental Autoimmune Encephalomyelitis) EAE" in the study.

Overall, the document appears to be a detailed scientific study focusing on the mechanisms of EAE and its treatment.

[DOI: 10.22102/20.3.113]
کاوش آپوپتونیک و نمایی باتش شناسی گلورومولی نرمال همراه بودن، در این مطالعه سلولهای بنیادی مزانتیشمی پس از تزریق به کلیه آبی دیده می‌شود و سمت سلولهای رنان تماشای یافته، در حالی که گروه کنترل با مانویتی و ویتنز مزانتیشمی ناشی از تخریب سلولهای جزایر گلورومولی همراه بودن، سلولهای بنیادی مزانتیشمی قادر به سطحی تکثیر در کلیه های دیابتیک را ترکیب کند. از سوی دیگر سلولهای بنیادی مزانتیشمی به سطح بیماران پایینه سلولهای بنیادی خونی در بدن یافته است. درمان استروپیدی با کوارک کردن همراه بودن دارای آزمایشی‌های غیر تصادفی استفاده از سلولهای بنیادی مزانتیشمی آنتیک در درمان GVHD شده است. Prochymal به 28 روز پس از تزریق تراکم بین 177 و 180 در 28 پیمان سی ترکیب (II-IV) GVHD در بیماران یک گروه (17% پایش اولیه به Prochymal) و 7% پایش و کاربرد مزانتیشمی اکتوکین در درمان تزریق کننده جراحی 17% در انسداد سلولهای تزریق. سپس این در دسترس جراحی شدید در دسترس کننده گروه دیگر، Prochymal در آزمایشات استفاده می‌شود. (Sudres) در مدل موش مفاهیم کردن، که سلولهای بنیادی مزانتیشمی در جریان گزشته شدن در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخداد جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخdad جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق سلولهای بنیادی مزانتیشمی بود. بلوغ میان مدل موش مفاهیم کردن. سلولهای بنیادی مزانتیشمی در GVHD در مطالعه دیگر از رخdad جلوگیری و به این عمل آماده‌گوئی که این آن با وجود داشت Zaman تزریق Seld J, Solution M, 10-10, YM, M2 از قبل 1 از 700 و CD206 که واپسیه به وضعیت فيوز بود دیده شد. در

در Downloaded from sjku.muk.ac.ir at 21:06 +0330 on Friday March 20th 2020 [DOI: 10.22102/20.3.113] مهلت علمی دانشگاه علوم پزشکی کرمانستان / دوره پیستم / مرداد و شهریور 1395

Xenotransplantation
Monocyte Chemoattractant Protein-1
Resolution

Mansouri et al. (2002)
آمپب روپیّه: نوّن تعلیم کندگی التهاب و ویروس روپی

ایجاد شده بیولوژیا به میسر می‌شود، توتسل سولولهای
بنیادی ماظحی، با کاهش تور میگریز را و جلوگیری از تصمیم
عملکرد گونه ناشی از کاهش تور میگریزها را یافته.

ارتباط سولولهای التهابی و افزایش سیتوکین‌های التهابی
منجمع 10‌دیده‌شده. بافت را بوسیله مکلوه‌ی عمل
کننده پاراکاپنی‌ی تیم و در مدت ۱۴ روز، فیروز ایجاد
شد. در به موه سی سولولهای بنیادی ماظحی بهبود
یافته. در این مطالعه سولولهای بنیادی ماظحی از پیشرفت
و توزیع فیروز و پولیفیروز و هر پس‌هایها از این جایگزینی
کلاژن نمی‌گردد (۱۰۱).

آسم: بر اساس مطالعات، کاهش پرونیولیت و استنک به بیوند
نای در موش‌های دانش، به سی سولولهای بنیادی ماظحی
به علت افزایش IL-۱۰ و کاهش TGF-β و به
دبای ترسیم سیتوکین‌های سولولهای بنیادی ماظحی آلوژنیک
و بعلت افزایش ۱۰ و کاهش IL-۴ مایع برونیت و
همجنسی منفی و استنک و ترشح مکلوه‌ی
ایمنوسپریس از قبل HGF
که اثر منفی بر التهاب راه‌های
هوایی و ازاد جراحی دارد، حفاظت سی سی‌ها از
آکرز به واسطه کاهش در صورت گرفت. بنابراین
سولولهای بنیادی ماظحی آلوژنیک در مانند بسیاری
از بیماری‌ها نتیجه جمله آسم مزمن نیز کاربرد دارد
تبریم استخوان
نرم طبیعی سولولهای بنیادی ماظحی
آلژنیک مهندسی به هدایای ۲-۲
بر این مطالعه، راه‌های انتقال داده
شده به سولولهای بنیادی ماظحی به طور مستقیم در تبریم استخوان
و در منابع روز در بافت آسپی دیده، نقش داشته. از این‌رو
فراوانی کلینیک سولولهای بنیادی ماظحی آلوژنیک و استنک به

Load ** Segmental *** Cardioprotectin *** Rate **

نقل علمی دانشگاه علوم پزشکی کرمان / مرکز دیجیتال و پیشگیری ۱۳۹۹
سلولهای بنیادی مناطقی موییزیک می‌توانند به صورت اولیه و یا به صورت اگزوز، قادیرند به سمت سومورها و باته‌های معادل آن مهاجرت کنند. در تیجیک به ان این‌روکرد در گریگ بودن عوامل کششی سومورها از قبیل TNE-β، 12- و دیگر الگوهای آن، آپورپتوس وابسته به سومورها در سال‌های اخیر هدف در سومور سلامت آمیزی نشده است (42). اخیراً سومورهای بنیادی مناطقی به عنوان حامل در تحویل نانوذات در افزایش اثر هوشیرکشی مورد مطالعه قرار گرفته است. از این رو شناخت این‌روکردهای کنترل‌پذیر سومورها و نت‌های این است (3). در مطالعات دیگر، همکاران در رت با انقلال "Ad-Endo CPC" با آن‌ویروس Endostatin تومور و مهار رگ‌های مهره بودند. در این مطالعه خاصیت ضد سومور خود را با یک ترکیب دارویی تومور و افزایش بقای پس از پیوند نشان دادند. همچنین در این مطالعه، کاهش پروبلامسیون سومورهای توموری و تعداد عروق خونی و افزایش آپورپتوس سومورهای توموری نشان دادند. از این رو رساندند که بالعده سومورهای توموری لغزه قابل انتظار است از دستگیری سومورهای توموری در ترکیب با سومورهای بنیادی مناطقی به عنوان یک روش جدید و محلول این‌روکردهای های جدید است.

چنین انتظار است از این سومورهای در مدل‌های حیوانی پیشک‌کشی شان‌دهنه توانایی سومورهای بنیادی مناطقی در سرکوب پاسخ ایمنی، ایمنی، تکثیر می‌شود، اثر ضد التهاب، روند تهابی، ترمیم بلافاصله و خاصیت ضد سرطانی است. اثر دارمانی آنها به آراز کردن مولکول‌های ضد التهابی و موثری است. تکثیر پاسخ ایمنی و خاصیت ضد التهاب آنها به طور گسترده در مطالعات متعدد ثابت شده است. هرچنین پاسخ مطالعات انگلیسی شده، به عنوان یک درمان سومور جدید در دیگر سومور‌ها به کنترل مناطقی مورد استفاده قرار گرفته.

5: فهمینی می‌توان به نقش اصلی این سومورها در نقش دسترودن، دیستروفی عضلانی و دیسک‌های آلوده و عصبی‌های مناطقی عضلانی، را نشان می‌دهد.

ملیه علمی دانشگاه علوم پزشکی کرمان (رویکرد تومورها)، دوبلیکس / رهبری و استادیویل ۱۹۹۳
آپورتوتی آنها، چندین مشکل در استفاده از سلول‌های بیانی
متانشیمی وجود دارد. درمان با سلول‌های بیانی متانشیمی
هم می‌توان از سلول‌های بیانی آتروژنک و هم می‌توان از
سلول‌های آتروژنک استفاده کرد. اما سلول‌های آتروژنک با
کارانی بالا پیوند خود را و احتمال ایجاد در اومور نامبرارا
شدن سلول‌های نیترشک یا مبادا خواهد داشت. این
سلول‌های می‌توانند بطور خودبخودی دچار اختلالات اپی
ژنیک و نهایتاً تومورزون شوند. در استفاده از سلول‌های
بیانی متانشیمی آتروژنک نیز خطر انتقال عوامل احتمالی
از دهنده به گیرنده با تعامل سیستمی ایمن دیده شده است.
در نتیجه برخی عوامل در شخص عارضه‌ای پایبند
حتی گامی تامپز کنتراک‌نده در برون تن درد دیده می‌شود.
ب این گروه سلول‌های بیانی گروه‌بندی نمی‌شود. از سوی
دیگر، سلول‌های بیانی متانشیمی تحت شرایط بهبودی
بیا بین مولکول‌های مانند سلول‌های عرضه‌کننده
(ف.20) و (و.20). طبقه‌بندی متعدد پایدار سلول‌های
降落 دهندگان با تعالی می‌شود. در پایه مناسب
ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و همکاران، سلول‌های در خصوص گروپری از
پرورش خورده‌اند، اما در مطالعات ای مشابه
تولید از پرواز ساختار و Hm}
Clinical Grade Production

Fluorescent In Situ Hybridization
Polymerase Chain Reaction
Human Leukocyte Antigen
Antibody-Dependent Cell-Mediated Cytotoxicity

BPBMB - MSCs

Downloaded from sjku.muk.ac.ir at 21:06 +0330 on Friday March 20th 2020
DOI: 10.22102/20.3.113
نتیجه‌گیری
سلول‌های بنیادی ماتانزیمی با توجه به فرار از سیستم ایمنی و تولید c-myc محول (الگه کندنده به ماری) و مولکول‌های دیگر در تعامل با سیستم ایمنی و بافته‌های آسیب‌دهنده در جریان تومور را در درمان بیمارهای الکامی و غیر الکامی کمک می‌کند. از طرفی با توجه به فاکتورهای نسبت به رادیو و توان تماشایان و جلنگری از خطرات احتمالی، استفاده از سلول‌های نازنین دستورالعمل‌های استاندارد (کلینیک، تولید و کنترل سام) در شرایط بروند نتیجه‌گیری چنین می‌باشد که هنوز در اکثر کشورها موجود نیست. علی رغم این مشکلات، استفاده گسترده‌ای این سلول در طب گرایی و سایر بیمارهای دیگر در آینده می‌تواند نظر روند بود. حتی در آینده با سلول‌های مذکور می‌توان در تحول درمان‌های رایج به تومورها و بوسیله عامل ماهی به صورت هدف‌مند و توسیع پاتری در درمان بدخیم‌ها بهره جست.

تنکر و قدردانی
با تشکر و قدردانی از معاونت محرمان پژوهش دانشگاه علوم پزشکی کرمانشاه و همچنین ریاست و معاونت محترم مرکز تحقیقات بیولوژی پزشکی کرمانشاه، که امکان این مطالعه را فراهم ساخته و همچنین ضمن سپاس و قدردانی از همکاران محترم مکنتم تحقیقات بیولوژی پزشکی، که ما را در این مطالعه باری نیز می‌دانم.

کشت دراز مدت (5-6 ماه) با تغییر شکل همراه هستند.
سلول‌های c-myc محور شکل جانبدار، با تغییرات کروموزومی، افزایش سط‌طح و تغییرات همراه بوده. در نهایت شکل جنگری تومور را پدیدال خواهد داشت. لذا جنگری c-myc از تغییرات (بدیخیم)، جنگری از پیشرفت و محدود کردن پاسخ‌ها، باعث توجه خیلی دقیقی را بکار Bernardo و همکاران توانستند
سلول‌های بنیادی ماتانزیمی را تا 15 سال (به طور سالم) تکثیر دهنده. 4 سلول‌های بنیادی ماتانزیمی آتروفسک و mtDNA بدیل سط‌طح پایینی از بیان MHC-I و عدم بیان MHC-II و مولکول‌های کمک تحریکی از قبیل CD40، CD80، CD86 بنابراین این سلول‌ها می‌توان برای پیوند آتروفسک، بدون دفع این امکانات، به‌طور گسترده‌تر در درمان‌های الکامی و نه اینکه روی حدود محدود مورد استفاده قرار داد، گرچه نیاز به مطالعات بیشتر دارد.

شناخت و پژشکان در زمینه تحقیقات بر روی سلول‌های بنیاد ماتانزیمی برای تنظیم مقررات مناسب و دقیق و همچنین تجهیز استانداردهای لازم، بایستی گرد هم آمد و روزگارهای جدید برای کشف، ذکر، محل و اداره سلول‌های بنیادی ماتانزیمی در درمان ارائه دهد. لذا برای بهینه سازی شرایط لازم در درمان بای سلول‌ها و جهت جنگری از روش‌های فوق الذکر، بررسی های متعدد و تامین دارد.

Immune Privileged
References
51. Schnabel LV, Lynch ME, van der Meulen MCH, Yeager A E, Kornatowski MA, Nixon AJ. Mesenchymal stem cells and insulin – Like growth factor-1 gene – enhanced...

