پیامدهای گرفتن در معرض میدان‌های الکترومغناطیس (EMF) با شدت پایین به مدت طولانی به عنوان یک عامل بالقوه خطرناک برای سلامتی بشر است. درباره اثرات EMF بر سلامت انسان نظرات مختلی وجود دارد. مطالعات ایمپلورژیکی و آزمایشگاهی جراحی اثرات زیان‌آور میدان‌های الکترومغناطیس را بر سیستم‌های بیولوژیکی از جمله سیستم عصبی مزکی نشان داده است. مطالعات قبلی با میکروسکوپ نوری یا بزرگ‌تر اثرات زیان‌آور میدان‌های الکترومغناطیس نبوده است. در محققان بوده است. هموگربین این اثر میدان‌های الکترومغناطیس برای ساختن مخجح روت بوده.

روش بررسی: در این بررسی، 3 متر ت نتیجه‌گیری و star بررسی به عنوان مدل مدل آزمایشگاهی با شدت قابل قبول نشان داده شده و به دو گروه سایه آزمایش و کنترل تقسیم شدند. سه گروه آزمایش به مدت 30، 60 و 90 روزه با شدت سه میلی تلاس قرار گرفتند. پس از اتمام این مدت، عوامل الکترومغناطیس بر روی گروه آزمایش و کنترل کمتر کمتر شدند. بنابراین از محققان جهت مطالعه با میکروسکوپ الکترونی آماده شدند و فاصله آنها مورد بررسی قرار گرفت. بررسی کمی و تعداد سلول‌ها در دو گروه کنترل و آزمایش با استفاده از نرم‌افزار آماری SPSS test و آزمون مودال آنالیز آماری قرار گرفت. سطح پ<0/05 معنی‌دار در نظر گرفته شد.

ردپایه‌های: نتایج نشان داد که سلول‌های بیولوژیکی در گروه آزمایش نسبت به گروه کنترل کوچکتری داشته و تعادل آنها بطور معنی‌داری (P<0/05) در گروه آزمایش کاهش یافته است. از دیگر بیان‌های این پژوهش کوچک‌تر و متراکم شدن سلول‌ها، دیلیشن شدن شکل آندوبلاستری، واکولیت شدن سیتوپلاسم، پاره‌گی و از بین رفتن کریستالها در میتوکندریهای سلول‌های بیوزئول‌تر محققان بوده.

نتیجه‌گیری: نتایج تحقیق حاضر نشان داد که قرارگیری در معرض EMF می‌تواند باعث ایجاد تغییرات تخربی در مخجح EMF سبب ایجاد تغییرات تخربی در مخجح EMF می‌شود.

کلیدواژه‌های: میدان الکترومغناطیس، مخجح، سلول بیوزئول

�قصد مقدمه

انسان امروری به طور ناخواسته در معرض میدان الکترومغناطیس (EMF) ناشی از لوازم خانگی، تجهیزات پزشکی و دستگاه‌های مولود قرار گرفت.

1. Electromagnetic Field
آزمایش برای بررسی خطر ابتلا به سرطان ناشی از قرار گرفتن در معرض میدان‌های الکترومغناطیس با فرکانس پایین انجام شده که در مورد فرکانس‌ها بین جریان‌های الکتریکی H< 0.5 هردو است (1). مطالعات ایپیدمیولوژیک نشان می‌دهند که میزان الکتریکی با چربی H< 0.5 و شدت بیشتر از 2 میلی تсла در محیط زندگی و کار، ریسک ابتلا به سرطان را افزایش می‌دهند (2).

نتایج حاصله از بررسی‌های invitro و invivo نشان می‌دهد که برای پیشگیری از این تغییرات حافظه، افسردگی، احساس ناراحتی، داغی یا اثرات دیگر از این میزان تأثیر ندارد و اگر شخصیت یا استفاده از تلفن‌های همراه اثرات شدیدی که این نشان از اثرات EMF برای بدن را دارده است لیش می‌کند. (3) همکارانش در گروه نشان داده است که بین نقص (کاهش) حافظه و بایدگی در جودنگاه که در معرض EMF قرار دارد رابطه وجود دارد (4).

اثرات میدان‌های الکترومغناطیس بر سیستم‌های بیولوژیکی به طور نسبتی گسترهای مورد بررسی قرار گرفته ولی بعلت قطعی بودن نتایج حاصله و مشخص نبودن مکانیزم اثر این میدان‌های الکتریکی در این زمینه هنوز به طور فعال ادامه دارد. با توجه به استفاده روز افزون از وسایل الکتریکی که مولد میدان‌های الکترومغناطیس هستند، بررسی همه جانبه در مورد اثرهای آنها بر سیستم‌های بیولوژیکی ضروری است. علیرغم اینکه کارهای متعددی در زمینه اثرات EMF انجام گرفته است و اثرات میدان الکترومغناطیس بر CNS، اما استفاده از میکروسکوپ نوری بررسی شد و مشخص گردید که تحت تأثیر میدان الکترومغناطیس ضخامت لایه مولکول در مخچه کم شده، سلول‌های پورتکس کوچک و

�لتا میدان الکترومغناطیس

روش بررسی

برای انجام این بررسی از دستگاه مولد میدان الکترومغناطیس که در بخش بافت شناسی طراحي و ساخته شده بود استفاده گردید. دستگاه مولد میان بررسی توری ی پیچ همه‌مریث ساخته شد که در رابطه با این انتخاب، موردی از قبل نیاز به دستیابی به یک میدان یکنواخت و با شدت معنی‌دار و محدودیت‌های مختلف به‌طور از مجموعه داشته و همواره مناسب داخل دستگاه از امر تعیین کننده بود. با توجه به شدت جریان مصرفی مولد و مدت زمان طولانی استفاده از آن در طی روز برای چهل گروه گرم شدن دستگاه و بهبود مناسب داخل آن فن (پنکه) که در پایی دستگاه نصب گردیده استفاده می‌شد. به طور کلی دستگاه مولد، شامل دو سیم بیچ در جهت مختلف هم می‌باشد که میان یکنواخت را در مرکز دستگاه که محل قرارگیری حیوانات می‌باشد انجام می‌گیرد. برای تولید EMF از جریان متناوب 50 استفاده می‌شد.

جمع‌بندی مطالعه در این بررسی موش‌های رت نژاد (Wistar) (پودن) که در حیوانخانه بخش بافت شناسی داشتند به سرعت 200 گرم و 5 هفته سن داشتند. رشد یا به دو گروه آزمایش و کنترل تقلیل شده و در هر گروه 15 رت تحت مطالعه قرار گرفتند.

1. Central nervous system

مجله علمی دانشگاه علوم پزشکی کرمان/ دوره پنجم/ پاییز 1385
آبگیری (Dehydration) از اتانول با درجات صعودی استفاده شد. در مرحله جایگزینی ابتدا از مخلوط اتانول 100 درصد بایروپیلن اکساید به نسبت مساوی و سپس از بایروپیلن اکساید خالص در زیر هود استفاده گردید در مرحله آغشته سازی (infiltration) ابتدا از مخلوط بایروپیلن اکساید و زرین در مرحله آخر از رزین خالص استفاده شد. جهت قابلیت آب‌پذیری از (Embeding) رزین خالص به مدت 3 ساعت در دمای 60 درجه سانتی‌گراد در داخل اون استفاده شد پس از اصلاح و ترمیم انجام شد و بر روی نازک 65 نمونه‌ی واکنش‌دار استفاده از اولترافیلم‌پوش و تغییر شیشه‌ای داده شد. رنگ آمیزی با تولوئید بن و مطالعه با میکروسکوپ نوری انجام گردید، جهت مطالعه با کلروفیلم پیوسته و پس از انفوژن پارافرمالدهید به داخل بطن چپ و متوفف شدن ضرابات قلب، اقدام به جدا کردن سر و جمجمه کرد و سپس جمجمه را با استفاده از تیغه اسکالپ و قیچی یک شکاف طولی در انتهای درز سازی و نیز شکاف عرضی در انتهای درز کرونال در قافده جمجمه ایجاد نموده و برداشتن دیواره جمجمه و ایجاد یک برش عرضی در ناحیه بعد انجام آن را از ناحیه جدا و با دقت قرار انجام را از طریق یک برش در انتهای دیواره جمجمه و پس از تشريح از بقای مورد مطالعه نمونه برداری شد و در بقای فسفات 0/1، مولار به قطعاتی به ابعاد 10×10 میلی‌متر برش داده می‌شد و در مراحل آماده‌سازی بافت جهت مطالعه با میکروسکوپ الکترونی انجام گردید. برای ثبت بافته‌ها از روش ثابت سازی مضاعف شال استفاده از محلول گلوتار آلدرید و پارافرمالدهید به کار رفته و سپس ثابت سازی تانین به تراکسیداپیلولی بیانشده گرفت. برای مرحله 4، 5 و برای مدت 4 ماه، تحت تأثیر میدان الکترومغناطیسی، اندماه سلول‌های پور کنست نسبت به

گروه آزمایش: در این گروه روتها روزانه 4 ساعت
و پایین مدت 3 قرار گرفتند.

گروه کنترل: طراحی زیست و تعیین در این گروه کاملاً مشابه با گروه آزمایش بود و فقط تحت تأثیر میدان الکترومغناطیس قرار نمی‌گرفت. لازم به ذکر است زمان فرارگردی روتها تحت تأثیر میدان الکترومغناطیس از اول شهریور ماه 82 تا پایان آذر ماه 82 در حیوانات بخش پشتی، فاصله دانشگاه پزشکی تبریز بود و سایر مراحل عملی تا تاریخ مهر ماه 83 در مرکز تحقیقات علوم دارویی دانشگاه علوم پزشکی تبریز آباده داشت.

هر 3 گروه پس از اتمام مدت 4 ماه با استفاده از
کلروفیلم پیوسته و پس از انفوژن پارافرمالدهید به داخل بطن چپ و متوفف شدن ضرابات قلب، اقدام به جدا کردن سر و جمجمه کرد و سپس جمجمه را با استفاده از تیغه اسکالپ و قیچی یک شکاف طولی در انتهای درز سازی و

یافته‌ها

یافته‌های ما نشان داد که در محیط تحت تأثیر میدان الکترومغناطیسی، اندماه سلول‌های پور کنست نسبت به

جمله علمی دانشگاه علوم پزشکی کرمان/ دوره پایه‌های/ پاییز 1385

116x767
می‌دهد همانطور که مشاهده می‌شود، سیول در ایالدیت سیتوبلاستیک و هسته سیتوبلاستیک مرکزی کاملاً کمتر می‌باشد و در سیتوبلاستیک نیز شبکه آندوپلاسمی دیده می‌شود. در شکل (5) می‌تواند برای فرآیندی غیر عضلانی باشد. مشاهده‌اند. با درشت نمایی بیشتر در شکل (6) کریستال شیعه میکروکریستالی دیده می‌شود که در مقایسه با گروه کنترل نامنظم و مبهمر می‌باشد. به طوریکه ملاحظه می‌گردد، میکروکریستالی کوچک و دارای کریستالی تحلیل رفته می‌باشد و واکنش‌های توانالی متعادل در سیتوبلاستیک سیول دیده می‌شود و به نظر می‌آید میکروکریستالی دیده می‌شود. درون دیده می‌شود. آنادیز گویی افطار کوچک و برگه ویژه در میکروگرافی های الکترونی نشان داد که مانند قطر هسته در سیلول‌های پورکنی مخچه گروه کنترل 20/35 ± 16/36 mm بود که تفاوت بین دو گروه معنی‌دار بود (p<0.01) نسبت بین افطار برگه و کوچک هسته برای تعیین Axial Ratio سیتوبلاستیک و با درشت نمایده سیول‌های پورکنی گروه آندوپلاسمی 16 ± 1/44 mm و در سیول‌های پورکنی گروه آندوپلاسمی 14 ± 1/55 بود که تفاوت بین دو گروه معنی‌دار بود (p<0.01).

![شکل 1: الکترن میکروگرافی از یک سیول پورکنی در رت گروه کنترل. هسته (N) و هسته (Nu)](image-url)

شکل 1: الکترن میکروگرافی از یک سیول پورکنی در رت گروه کنترل. هسته (N) و هسته (Nu) و شیعه آندوپلاسمی (ER) در تصویر دیده می‌شود. ترکمایی 210 برایر

مجله علمی دانشگاه علوم پزشکی کرکستن/ دوره پنجم/ پاییز 1385
شکل ۲: اکتترون میکروگرافی از یک سلول پورکنژ در رت-گرود کنترل. با درشت نمایی بر اثر ۶۰۰۰‌برابر. هشته (N) میتوکسدریا (M) و شبکه آندوبلاسی (ER) در تصویر دیده می‌شوند. 

شکل ۳: اکتترون میکروگرافی از میتوکسدریا در رت-گرود کنترل. کریستال (C) در تصویر واضح دیده می‌شوند. بر اثر ۶۰۰۰۰برابر.

شکل ۴: اکتترون میکروگرافی از یک سلول پورکنژ در رت-گرود آزمایش. شبکه آندوبلاسی (ER) و هشته (N) در تصویر دیده می‌شوند. بر اثر ۶۰۰۰۰۰برابر.
پیشنهاد برای افزایش فعالیت‌های بررسی حاضر نشان داد که در مخچه تحت تأثیر میدان الکترومغناطیس اندازه سلول‌های پوکرکت نسبت به مخچه‌های کنترل کاهش یافته است که این کاهش اندازه، می‌تواند ناشی از کاهش فعالیت‌های هسته و در نتیجه کاهش فعالیت سلول‌پاکش از دیگر پیشنهاد این بررسی، هتروکروماتیک و کوپچک شدن هسته سلول‌های پوکرکت مخچه به هم پرتسی با

بحث

پایگاه بررسی حاضر نشان داد که در مخچه تحت تأثیر میدان الکترومغناطیس اندازه سلول‌های پوکرکت نسبت به مخچه‌های کنترل کاهش یافته است که این کاهش اندازه، می‌تواند ناشی از کاهش فعالیت‌های هسته و در نتیجه کاهش فعالیت سلول‌پاکش از دیگر پیشنهاد این بررسی، هتروکروماتیک و کوپچک شدن هسته سلول‌های پوکرکت مخچه به هم پرتسی با

مجله علمی دانشگاه علوم پزشکی کرمان/ دوره پانزدهم/ تابستان 1385
کلیه در ره‌هایی که بند 34 روز و روزی 1 ساعت در معرض میادان بانکس پانیش (4500 MHZ) قرار گرفته نادر پسری با میکروسکوپ نوری و یک تریلیسیون اپتیلیوم تولید کلیه در ناحیه رأسی و نیز تغییرات دزنرای در گلوپولیهای کلیه را نشان داد و در بررسی با میکروسکوپ الکترونی هم تورم ارگانیالی غشاء در
میوکاردی و شبکه آندوپلاسیمی دیده شد (14).

از دیدگاه یافته‌های این پژوهش بر روی میخجی که کاهش معنی‌دار تعداد سلول‌های پورکوز تحت تأثیر بدهکار سلول‌های پورکوز بود که می‌تواند بعث تأثیر میادان بر میوکاردی و بدن شبکه آندوپلاسیمی در EMF به‌صورت مثبت باشد (15-17). نشان داده شده که بر روی سلول‌های مهاریت سلولی و تمامی در کورتکس میخجی در حالت تکامل اثرات غیر قابل پیش‌بینی دارد (16). به درک کلی بررسی‌های ما نشان داد میادان‌های الکترومغناطیس با قدرت 3 میلی تسلا در طولانی مدت بر سلول‌های میخجی باعث تغییرات به صورت می‌گردد.

هتروکروماتیک‌های هسته سلول‌های دیالال‌آه (میوکاردی و رئیکولوم
اندوپلاسیمی) که کاهش تعداد و اندازه سلول‌های پورکوز میشود. در مورد مکانیسم اثر عقیده بر این است که میادان ها بیشترین اثر خود را از طریق افزایش موضعی درجه حراست و با پیدایش رادیکال‌های آزاد اعمال می‌کند. در تامین این مسئله کوچکی ساخت هسته در ارتوتروپی‌های موش با دستگاه‌های سلولی درجه حرارت بدن گزارش شده است (18). اینکه رادیکال‌های آزاد باعث شکستن پیوندهای هیدروژنی می‌شوند. نیز نتایج شده است (19). مشخص شده که با افزودن این داده‌ها به سلول‌های گانگلیوئی شکه‌های

بروی سلول‌های پورکوز به‌صورت مثبت با استفاده

هرمون‌های فاس‌شماری انجام شده در پروتئین‌های فیبرگر مرکز تغییرات هسته به صورت پیدایش اشکال نامنظم در پروتئین‌های ره‌های تحت تأثیر میادان الکترومغناطیس با شدت 3 میلی تسلا بوده است (10).

همچنین بر روی غشاء سلول اتر می‌گذرد و EMF همچنین با تأثیر بر روی گلیکوپروتئین‌های فراپتین‌دان داخل سلول از جمله گلیکوپروتئین‌های داخل سلولی، سایتو اسکلت و سلول اتر می‌گذرد (11). در تامین این یافته‌ها داده شده که مقاومت‌های نوروتراکسیدریا از جمله
GABA در سلول‌های پورکوز تحت تأثیر میادان الکترومغناطیس کاهش می‌یابد (12). همچنین گزارش
شهد در این پژوهش که تحت تأثیر میادان به قدرت 30-100 mW/cm2 به میوکاردی یا کورتکس مغز ایجاد شده باعث تغییر فیبر‌ها در mRNA (MT TFA)
ترانسکریپت‌پاسیون میوکاردیال (11) ترک‌پاسیون میوکاردیال
می‌شود. فاکتور A ترک‌پاسیون میوکاردیال متابولیسم اندوز میوکاردیال را تنظیم می‌کند (13). از
دیدگاه یافته‌های بررسی حاضر تغییرات در ارگانیال‌های
مانند میوکاردیا و شبکه آندوپلاسیمی بود که دیالال‌های
شنده در گزارش‌ها و شبکه آندوپلاسیمی و نامنظم و مهم بودن
کربناتیوی میوکاردیال از جمله این تغییرات بود.
تغییرات ارگانیال‌ها ممکن است ناشی از تأثیر سوء میادان
بر روی غشاء آنها باشد. با بررسی مشابه بر روی ساختمان

مجله علمی دانشگاه علوم پزشکی کرمان/ دوره پنجم/ شماره 6/ ماه 1385/ میلادی
گفت که اثرات میدان‌های الکترومغناطیس بر موجودات زنده از طریق اثر آنها بر سلول‌ها و ارگانل‌های سلولی اعمال می‌گردد. بنابراین آزار سلولی مبایل اثرات زمانی آور میدان‌های الکترومغناطیس را تشکیل می‌دهد. نکته‌ای که توجه دیگری اینکه براساس پاتو‌های قبیل و نتایج آن دیده‌اند در اثرسی حاضر می‌توان نتیجه گرفت که اثرات سوی میدان‌های الکترومغناطیس بر سلول‌ها و ارگانل‌ها باعث مکمل‌یک میدان از طریق ایجاد حرارت موضعی و ایجاد رادیکال‌های آزاد توجه پذیر می‌باشد.

کشت تحت تأثیر میدان، تورم میتوکندریا کاهش می‌یابد و کریستال‌ها واضح دیده می‌شوند (۲۰۲۰).

نتیجه‌گیری

به طور کلی مطالعه حاضر نشان داد میدان‌های الکترومغناطیس با فرکانس ۳ میلی‌سیل سلاح طولانی مدت بر سلول‌های مخج به نظر تغییراتی به صورت زیاد می‌گردد.

هرکوماتیکی، شهر مسن سلول‌ها، دیالاته شدن ارگانل‌های غشاء‌دار (متیکریضر و ریکولوم اندوپلیسیک) و کاهش تعداد و اندازه سلول‌های پوکتر با توجه به نتایج حاصل‌های اثرسی حاضر می‌توان

References

6. سلیمانی راد، ج. فتاح دامودی، م. بررسی اثرات میدان الکترومغناطیس بر رشد و تکامل جنین رت و جولانگی مهار آن با اینترفرون. مجله پزشکی دانشگاه علوم پزشکی تبریز، سال 31 شماره 1376، صفحه 68-76.
10. شیرازی، سلیمانی راد، ج. تأثیر میدان الکترومغناطیس بر فرآیندهای ارگانهای تولید کننده مایع مینی (عده پروسات، کیسه مینی، مجرای ایپیدرمی)، پایان نامه جدید دریافت درجه کارشناسی ارشد علوم تشريحی (بافت شناسی). دانشگاه علوم پزشکی تبریز، 1381.