مدل سازی ریاضی فعالیت میوکاردیک روده باریک به منظور شناخت بیماری پاتوفیزیولوژی سندروم روده تحریکی پذیر

دکتر محسن بروزی، دکتر شهریار غربیزاده، شهر عباسیان، مهندس مهدی حسین طاهری

1- استادیار گروه فیزیولوژی دانشگاه علوم پزشکی کرمان، دانشکده پزشکی، گروه فیزیولوژی
ghanibzadeh@aut.ac.ir
2- استادیار گروه بیوتکنولوژی دانشگاه صنعتی امیرکبیر، دانشکده مهندسی پزشکی (مؤلف‌سازن)
3- کارشناس ارشد فیزیولوژی
4- دانشجوی کارشناسی ارشد مهندسی اقتصاد، دانشکده صنعتی شیراز

چکیده

زمینه و هدف: از آن جایی که سیستم عصبی انتریک پیچیده است و نیاز به شناخت بیشتری دارد. لذا، توصیه گرایش که فعالیت میوکاردیک روده باریک را به جهت شناخت بهتر سندروم روده تحریکی‌پذیری با استفاده از شبکه‌های عصبی مصنوعی مدل‌سازی کنیم جریان بار اطلاعات تحریکی، در این بیماری رابطه سیستم عصبی انتریک افزایش یافته است و سیستم عصبی انتریک نیز بیش از اندازه فعال و حساس می‌شود. هدف این تحقیق اثبات موضوع گفتگو با مدل سازی ریاضی بود. روش بررسی: از برنامه نرم‌افزاری MATLAB در این پروژه استفاده شد. از جعبه ابزار شبکه عصبی برای این کار استفاده شد و شبکه‌های عصبی مصنوعی که معادل شبکه عصبی انتریک بودند طراحی شدند. پایش‌های افزایش سیستم عصبی مصنوعی انتریک دانشمندان، ممان و نتایج اسپایک ها در شکل منحنی های فعا لیت میوکاردیک روده باریک به دست آمد که با اطلاعات تحریکی مطابقت داشت. نتیجه‌گیری: با استفاده از شبکه‌های عصبی مصنوعی توسعه اثر افزایش سرتوانی را در ایجاد اختلالات حرکتی در سندروم روده تحریکی‌پذیر به عنوان پاتوفیزیولوژی این بیماری مورد نیاز قرار داره. این تحقیق می‌تواند راه‌گشای مسماری برای طراحی شبکه‌های عصبی دیگری به منظور بررسی اثرات احتمالی در اثر روش‌های مورد استفاده در مدل سندروم روده تحریکی‌پذیر باشد.

کلید واژه‌ها: سیستم عصبی انتریک، سندروم روده تحریکی‌پذیر، سرتوانی، شبکه‌های عصبی مصنوعی

 verschilian 49/10/2011 08/12/48 مصلاح نهایی: 7/24/10/2011

مقدمه

شبکه نورون‌سانس‌ها و سینتربهای آن در سندروم روده تحریکی‌پذیر هستند. برای شناخت شبکه عصبی انتریک، مدل سازی ریاضی ضروری است. بنابراین کمک به تکنیک‌های تجزیه مناسبی که به منابع اطلاعات‌های رو در مورد عملکرد دنیای پدیده‌های بیولوژیکی فوقالذکر، در سطوح پیشرفته سلولی فراهم کنند، ابزار کامپیوتری

عمک‌دار دستگاه دسانویشی، به ویژه به دلیل

پیچیدگی های شبکه عصبی انتریک (ENS) جای تحقیق فراوانی دارد. این مطلب در مورد بیماری‌های پیچیدگی مثل سندروم روده تحریکی‌پذیر بسیار جدی است. برای فهم بهتر فیزیولوژی، پاتوفیزیولوژی، و فارماکولوژی، نیازمند افرادی تحقیقاتی از مدارهای کچک، سیناسوس‌ها، الکتروفیزیولوژی نورونها و
کاربردهای زیادی در الگوهای حرفی و پاسخ‌های
مکانیکی روده‌های باریک تحت شرایط نرم‌ال به دست آمده
که با فیزیولوژی و اطلاعات تجربی مطمئن و هم‌خوانی
دارند. همچنین با استفاده از مدل سازی به بیان و توصیف
کمی پیده‌های بیولوژیکی مثل نگرانی‌ها در هر کلمه
داخل سلول و نشانگر فعال اقتباسی سلول‌های عضله
صف روده‌های باریک اقدام شده است (1)

با استفاده از الگوهای روده‌های باریک با وجود

مطالعه‌های متعددی که تحقیق‌های باقی مانده است (2) یکی
از مکانیزم‌های مطرح شده افراشیس سروتونین در شکل

های کنار باریک و روده‌هایه به یک خروجی در دو

مرحله صورت می‌گیرد:

1- نورون و روده‌های مربط به خود را در وزن

سیستم مربطه ضرب می‌کند و جمع کل این مقادیر را

حساب می‌کند و آن را ورودی کلی به روده خالص

می‌گذارد.

2- نورون به وسیله یک تابع ورودی- خروجی،

ورودی یکی را به خروجی تبدیل خواهد کرد.

انواع تابع ورودی- خروجی که یک نورون از

آنها استفاده می‌کند و ورودی کلی را به خروجی تبدیل

می‌کند اغلب عبارتند از خصوصیات نروپالس، نژاد

هیپرپولیک و نژادن سیگارئید. انواع دیگر تابع

محوری به همراه علائم فراردادن آنها در جدول

1 خلاصه شده است. در نورون‌هایی که خروجی عمل

می‌کند، خروجی تابع خالص با ورودی خالص دارد.

در نورون‌هایی که از نظر آسان‌سازی استفاده می‌کند

خروجی به یکی از دو مقدار دلخواه را می‌پذیرد. به این

معنی که اگر ورودی زیر صفر بود، خروجی صفر است

و اگر ورودی صفر باشد، خروجی یک است.

روش بررسی

شبکه‌های عصبی

بحث شکل‌های عصبی در جراح حاضر یکی از

پیوندهای جوی‌های تحقیق است که افراد متعددی از

رشته‌های گوناگون علمی- از جمله علم نوروبیولوژی،

شنایه‌ی، کامپیوتر، پردازش سیگنال و فیزیک را به خود

جلب کرده است. تحقیقات و علاقه‌مندی به شبکه‌های

عصبی از زمان مشخص شدن عملکرد مغز به عنوان یک

سیستم دینامیک (که با استحالت موازی و پردازش معایر

با پردازشگرهای منفی کار می‌کند) آغاز شد. یک

شبکه عصبی در واقع یک مدل سازی کامپیوتری است
روده، مانند میزان تحریک مکانیکی گیرنده‌های روده، مقدار پتانسیل در نورون‌های آوران شبکه انتریکت، میزان کلسیم داخل سلولی و میزان تانسیون ایجاد شده در روده را با منحنی‌های بانک کرده است. در این تحقیق از این منحنی‌ها توسط مدل سازی (ساختار شبکه‌های عصبی مصنوعی) استفاده کرده‌اید. مدل سازی با استفاده از نرم‌افزار MATLAB و جعبه ابزار Neural Network انجام شده. برای هر دو نوع گلم، یک شبکه عصبی مصنوعی طراحی گردیده که متغیر اول ورودی و متغیر دوم خروجی مطلوب شبکه را تغییر دهیشد. به این ترتیب هفت شبکه عصبی متوازی ایجاد شده. برای یادگیری شبکها قسمتی از داده‌های تجربی را استفاده‌کرده‌اید و قسمت دوم داده‌های تجربی را برای آزمون هر شبکه کنار می‌گذاریم. در این نوع مختلفی از شبکها، شبکه الگوی عالی‌امتی با پهنای می‌داد.

یافته‌ها

در هنگام تعلم شبکها مقدار خطای خروجی شبکه، بعنوان معیار توانایی خروجی و خروجی واقعی، رسم شده. کاهش خطای نشان دهنده یادگیری شبکه بود (شکل‌ها ۱ و ۲).

جدول ۱: نواحی محور با علائم قرار دادی

<table>
<thead>
<tr>
<th>علائم قرار دادی</th>
<th>توضیحات</th>
<th>نام</th>
<th>رنگ</th>
</tr>
</thead>
</table>
| sign | a = 0, b < 0 | a = 1, b > 0 | رنگ‌دار
| slen | a = -1, b < 0 | a = 1, b ≥ 0 | رنگ‌دار
| lin | a = b | a = b | رنگ‌دار
| satl | a = -1, b < 0 | a = n, 0 ≤ n ≤ 1 | رنگ‌دار
| satl | a = 1, b < 1 | a = n, n > 1 | رنگ‌دار
| sig | a = 0, b < 0 | a = 0, b > 0 | رنگ‌دار
| sig | a = 0, b < 0 | a = n, n > 1 | رنگ‌دار
| pos | a = 0, b < 0 | a = 0, b > 0 | رنگ‌دار

شایان ذکر است که داده‌های تجربی مورد استفاده در تحقیق حاصل بر اساس مورون مونت و تحقیقات محققان دیگر به دست آمده است. به ویژه برای این منظور از تحقیقات متفاوت استفاده شده است. او ارتباط‌های موضوعی متفاوتی را در عمل می‌کرد.

نمونه‌ای: منحنی کم‌شنایی خطا (پنترسیل گیاهان دندان‌پزشکی مکانوسپوره‌ها)
نمودار ۵: محتوی کم شدن خطای شیکه
(پردازش عمل نورون حسی اولیه)

بعد از تعلیم شیکه‌های عصبی، اختلاف بین خروجی واقعی و خروجی هدف در هر شیکه مقایسه شد. نتایج نشان داد که در نمودارهای زیر مشاهده می‌شود، نام‌گذاری شیکه‌ها قبل قبول بوده است (شکل‌های ۳ و ۴).

نمودار ۴: اختلال در پنالتی پی سیناپسی تحریکی در سلول عضله IBS صاف روده در پیمانی (محور عمودی بر حسب میلیولت است)

به منظور مدل سازی اثر سندرم روده تحریک‌پذیر، نورون‌هایی از شیکه عصبی مصنوعی را که معادل نورون‌های سروتونرژیک روده بودند، تحریک کردیم.

نمودار ۳: محتوی مقایسه خروجی واقعی و هدف (پردازش عمل نورون حسی اولیه) (محور عمودی بر حسب میلیولت است)
نتیجه، اختلال پتانسیل پس سیناپسی تحرکی در سلول عضله صاف روده و اختلال انقباضی بود (شکل‌های 5 و 6).

نمودار 1: خلاقت بون کلمی داخل سلول‌های عضله صاف روده در حالت طبیعی و در بیماری IBS (محور عمودی میزان خلاقت فرچی بون کلمی است)

بحث

در مطالعه دستگاه گوارش، هنوز دانسته‌ها ما از شبکه عصبی انتخابی ناقص است. دلیل این موضوع آن است که عملکرد دستگاه گوارش ناشی از فرآیندهای مختلف الکتریکی، مکانیکی و شیمیایی است. جهت آشنايي با این شبکه عصبی، تکنیک‌های جامع مدل سازي پیش‌بینی شده‌اند.

یکي از اهداف شبیه‌سازی ما به دست آوردن مدلی بود که با اطلاعات فیزیولوژی هم‌خوانی داشته باشد. در این مدل، سیون کریم عمل مسیرهای آوران و ابزار و فعالیت‌های الکتریکی روده باریک را با استفاده از شبکه‌های عصبی مصنوعی شبیه‌سازی کیمی مدل پیش‌نهادی ما، براساس اطلاعات الکتریکی-فیزیولوژیکی

جمله علمی دانشگاه علم پزشکی کرمان/بوشهر/انتشارات مسکان 1385
ابتحاط نوسانات غلظت بون کلسیم با تائید
فعال: خروجی نیروی انقباضی عضله صاف را با وارد کردن نوسانات غلظت بون کلسیم داخل سلولی به دست آوردنی که شاهت خروجی واقعی شبکه و خروجی هدف قابل پیش بود. نتایج متفاوت نشان داد که، دهه
نیروی انقباضی ایجاد شده در سلولهای عضله صاف روده باریک 4/8 گرم است. در نتایج ما، همانند تائید میفناخوی دینامیک تولید نیروی فعل از لحاظ فاز و زمان با نوسانات غلظت کلسیم هم‌مانند هستند. شکل منحنی‌های محاسبه شده توسط میفناخوی مشابه منحنی‌های نری‌ی تجربه شده توسط اوزاکی و همکاران هستند (11).

- ارتباط پتانسیل عمل نورون‌های سروترونریزک در با پتانسیل پس سیناپسی غشاء عضله صاف: در این IBS شبکه توانسته‌ی خروجی پتانسیل پس سیناپسی تحرکی غشاء عضله صاف روده در بیماری IBS را با وارد کردن تحرکی نورون‌های سروترونریزک نشان دهد. خروجی واقعی شبکه با توجه به شکل (5) نشان‌دهنده بروز اختلالات در بیماری EPSP در بیماری IBS است.

- ارتباط پتانسیل غشاء عضله صاف در با IBS نوسانات غلظت Ca داخل سلولی: در این شبکه توانستم خروجی نوسانات غلظت بون کلسیم در بیماری IBS با وارد کردن پتانسیل غشاء عضله صاف روده به دست آورم. همان طور که در شکل 6 مشاهده شد، بین خروجی واقعی شبکه و هدف تفاوت وجود دارد. بنابراین، خروجی واقعی این شبکه نشان دهنده بروز اختلالات نوسانات غلظت بون کلسیم در IBS است.

- ارتباط پتانسیل غشاء عضله صاف با نوسانات غلظت کلسیم داخل سلولی: شبکه عصبی مدل ما قادر است نوسانات غلظت بون کلسیم در داخل سلولهای عضله صاف روده را شبیه سازی کند. در این شبکه عصبی، نمونه‌ی توانسته‌ی خروجی نوسانات غلظت بون کلسیم را با وارد کردن پتانسیل غشاء عضله صاف به دست آورم. شاهت خروجی واقعی شبکه و خروجی هدف قابل قبول است.

ثبت‌های اخیر از فعالیت الکتروفیزیولوژیکی از جسم نورون حسی اولیه و ثانویه می‌ترکی با توسط Bertrand و همکاران نشان می‌دهد که پتانسیل عمل (دامنه تخلیه) بین 75 و 90 میلی‌ولت منجر است (10). نتایج تحقیق ما درخصوص تخلیه نورون‌های حسی اولیه، از لحاظ زمان‌بندی، ارتفاع و شکل امواج با نتایج تجربی فوق همخوانی دارد.

- ارتباط پتانسیل عمل نورون حسی اولیه با پتانسیل پس سیناپسی در جسم نورون حسی ثانویه: با استفاده از برنامه نوشته شده، توانسته‌ی خروجی پتانسیل پس سیناپسی تحرکی در جسم نورون حسی ثانویه را که مطلق با یافته‌های سایر محققین بود، با وارد کردن پتانسیل عمل نورون حسی اولیه به دست آورم.

- نظر می‌رسد برای هر شدن شاهت دو نمودار استفاده از شبکه‌های خاص شناختی شناختی باشد.
نتیجه گیری

به طور کلی در این پژوهش نویسنده با هفت شیوه عصبی مصنوعی و یک برنامه‌نویسی در زبان MATLAB، ارتباط موجود بین متغیرهای مختلف شبکه اترویک (متغیرهای محرک مکانیکی، پتانسیل گیرنده دندانی، پتانسیل عمل بیانهای حسی اولیه و ثانویه، پتانسیل غشاء عضله صاف، نوسانات غلتک یون کلسیم داخل سلولی و نوسانات نیروی انقباضی) را با هم به دست آورمی. این شبیه سازی نهایتاً بروز نشان دادن اثر افزایش تجربی دقت را از بین نمی‌برد بلکه با ارتقاء پیشینه‌هایی می‌تواند به مطالعات تجربی کمک کند و گامی مؤثر در پیشرفت این گونه تحقیقات باشد.

References